CHRIST (Deemed to University), BangaloreDEPARTMENT OF MATHEMATICSSchool of Sciences 

Syllabus for

1 Semester  2021  Batch  
Course Code 
Course 
Type 
Hours Per Week 
Credits 
Marks 
AEN121  ADDITIONAL ENGLISH  Ability Enhancement Compulsory Courses  3  3  100 
ELE131  NETWORK ANALYSIS AND ANALOG ELECTRONICS  Core Courses  4  4  100 
ELE151  NETWORK ANALYSIS AND ANALOG ELECTRONICS LAB  Core Courses  2  2  50 
ENG121  ENGLISH  I  Ability Enhancement Compulsory Courses  3  2  100 
FRN121  FRENCH  Ability Enhancement Compulsory Courses  3  3  100 
HIN121  HINDI  Ability Enhancement Compulsory Courses  3  3  100 
KAN121  KANNADA  Ability Enhancement Compulsory Courses  3  03  100 
MAT131  DIFFERENTIAL CALCULUS  Core Courses  4  4  100 
MAT151  INTRODUCTION TO PYTHON PROGRAMMINGI  Core Courses  2  2  50 
PHY131  MECHANICS  Core Courses  4  04  100 
PHY151  MECHANICS LAB  Core Courses  2  02  50 
SAN121  SANSKRIT  Ability Enhancement Compulsory Courses  3  3  100 
TAM121  TAMIL  Ability Enhancement Compulsory Courses  3  3  100 
2 Semester  2021  Batch  
Course Code 
Course 
Type 
Hours Per Week 
Credits 
Marks 
AEN221  ADDITIONAL ENGLISH  Ability Enhancement Compulsory Courses  3  3  100 
ELE231  LINEAR AND DIGITAL INTEGRATED CIRCUITS  Core Courses  4  4  100 
ELE251  LINEAR AND DIGITAL INTEGRATED CIRCUITS LAB  Core Courses  2  2  50 
ENG221  ENGLISH  II  Ability Enhancement Compulsory Courses  3  2  100 
FRN221  FRENCH  Ability Enhancement Compulsory Courses  3  3  100 
HIN221  HINDI  Ability Enhancement Compulsory Courses  3  3  100 
KAN221  KANNADA  Ability Enhancement Compulsory Courses  3  03  100 
MAT231  DIFFERENTIAL EQUATIONS  Core Courses  4  4  100 
MAT251  INTRODUCTION TO PYTHON PROGRAMMINGII  Core Courses  2  2  50 
PHY231  ELECTRICITY AND MAGNETISM  Core Courses  4  04  100 
PHY251  ELECTRICITY AND MAGNETISM LAB  Core Courses  2  02  50 
SAN221  SANSKRIT  Ability Enhancement Compulsory Courses  3  3  100 
TAM221  TAMIL  Ability Enhancement Compulsory Courses  3  3  100 
3 Semester  2020  Batch  
Course Code 
Course 
Type 
Hours Per Week 
Credits 
Marks 
AEN321  ADDITIONAL ENGLISH  Ability Enhancement Compulsory Courses  3  3  100 
ELE331  COMMUNICATION ELECTRONICS  Core Courses  4  4  100 
ELE351  COMMUNICATION ELECTRONICS LAB  Core Courses  2  2  50 
ENG321  ENGLISHIII  Ability Enhancement Compulsory Courses  3  2  100 
FRN321  FRENCH  Ability Enhancement Compulsory Courses  3  3  100 
HIN321  HINDI  Ability Enhancement Compulsory Courses  3  3  100 
KAN321  KANNADA  Ability Enhancement Compulsory Courses  3  03  100 
MAT331  REAL ANALYSIS  Core Courses  4  4  100 
MAT351  PYTHON PROGRAMMING FOR MATHEMATICS  Core Courses  2  2  50 
PHY331  THERMAL PHYSICS AND STATISTICAL MECHANICS  Core Courses  4  04  100 
PHY351  THERMAL PHYSICS AND STATISTICAL MECHANICS LAB  Core Courses  2  02  50 
SAN321  SANSKRIT  Ability Enhancement Compulsory Courses  3  3  100 
TAM321  TAMIL  Ability Enhancement Compulsory Courses  3  3  100 
4 Semester  2020  Batch  
Course Code 
Course 
Type 
Hours Per Week 
Credits 
Marks 
AEN421  ADDITIONAL ENGLISH  Ability Enhancement Compulsory Courses  3  3  100 
ELE431  MICROPROCESSOR AND MICROCONTROLLER  Core Courses  4  4  100 
ELE451  MICROPROCESSOR AND MICROCONTROLLER LAB  Core Courses  2  2  50 
ENG421  ENGLISHIV  Ability Enhancement Compulsory Courses  3  2  100 
FRN421  FRENCH  Ability Enhancement Compulsory Courses  3  3  100 
HIN421  HINDI  Ability Enhancement Compulsory Courses  3  3  100 
KAN421  KANNADA  Ability Enhancement Compulsory Courses  3  03  100 
MAT431  ALGEBRA  Core Courses  4  4  100 
MAT451  PYTHON PROGRAMMING FOR MATHEMATICAL MODELLING  Core Courses  2  2  50 
PHY431  WAVES AND OPTICS  Core Courses  4  04  100 
PHY451  WAVES AND OPTICS LAB  Core Courses  2  02  50 
SAN421  SANSKRIT  Ability Enhancement Compulsory Courses  3  3  100 
TAM421  TAMIL  Ability Enhancement Compulsory Courses  3  3  100 
5 Semester  2019  Batch  
Course Code 
Course 
Type 
Hours Per Week 
Credits 
Marks 
ELE531  EMBEDDED SYSTEMS AND IOT FUNDAMENTALS  Core Courses  3  3  100 
ELE541A  OPTO ELECTRONIC DEVICES AND COMMUNICATION  Discipline Specific Electives  3  3  100 
ELE541B  ELECTRONIC INSTRUMENTATION  Discipline Specific Electives  3  3  100 
ELE541C  DIGITAL SIGNALS AND SYSTEM ARCHITECTURE  Discipline Specific Electives  3  3  100 
ELE551  EMBEDDED SYSTEMS AND IOT FUNDAMENTALS LAB  Core Courses  2  2  50 
ELE551A  OPTO ELECTRONIC DEVICES AND COMMUNICATION LAB  Discipline Specific Electives  2  2  50 
ELE551B  ELECTRONIC INSTRUMENTATION LAB  Discipline Specific Electives  2  2  50 
ELE551C  DIGITAL SIGNALS AND SYSTEM ARCHITECTURE LAB  Discipline Specific Electives  2  2  50 
MAT531  LINEAR ALGEBRA  Core Courses  3  3  100 
MAT541A  INTEGRAL TRANSFORMS  Discipline Specific Electives  3  3  100 
MAT541B  MATHEMATICAL MODELLING  Discipline Specific Electives  3  3  100 
MAT541C  GRAPH THEORY  Discipline Specific Electives  3  3  100 
MAT541D  CALCULUS OF SEVERAL VARIABLES  Discipline Specific Electives  3  3  100 
MAT541E  OPERATIONS RESEARCH  Discipline Specific Electives  3  3  100 
MAT551  LINEAR ALGEBRA USING PYTHON  Core Courses  2  2  50 
MAT551A  INTEGRAL TRANSFORMS USING PYTHON  Discipline Specific Electives  2  2  50 
MAT551B  MATHEMATICAL MODELLING USING PYTHON  Discipline Specific Electives  2  2  50 
MAT551C  GRAPH THEORY USING PYTHON  Discipline Specific Electives  2  2  50 
MAT551D  CALCULUS OF SEVERAL VARIABLES USING PYTHON  Discipline Specific Electives  2  2  50 
MAT551E  OPERATIONS RESEARCH USING PYTHON  Discipline Specific Electives  2  2  50 
PHY531  MODERN PHYSICS  I  Core Courses  3  3  100 
PHY541A  ANALOG AND DIGITAL ELECTRONICS  Discipline Specific Electives  3  3  100 
PHY541B  RENEWABLE ENERGY AND APPLICATIONS  Discipline Specific Electives  3  3  100 
PHY541C  ASTRONOMY AND ASTROPHYSICS  Discipline Specific Electives  3  3  100 
PHY551  MODERN PHYSICS  I LAB  Core Courses  2  2  50 
PHY551A  ANALOG AND DIGITAL ELECTRONICS LAB  Discipline Specific Electives  2  2  50 
PHY551B  RENEWABLE ENERGY AND APPLICATIONS LAB  Discipline Specific Electives  2  2  50 
PHY551C  ASTRONOMY AND ASTROPHYSICS LAB  Discipline Specific Electives  2  2  50 
6 Semester  2019  Batch  
Course Code 
Course 
Type 
Hours Per Week 
Credits 
Marks 
ELE631  VERILOG AND FPGA BASED DESIGN  Core Courses  3  3  100 
ELE641A  NONCONVENTIONAL ENERGY SOURCES AND POWER ELECTRONICS  Discipline Specific Electives  3  3  100 
ELE641B  NANOTECHNOLOGY AND NANOELECTRONICS  Discipline Specific Electives  3  3  100 
ELE641C  DATA COMMUNICATION AND NETWORKING  Discipline Specific Electives  3  3  100 
ELE651  VERILOG AND FPGA BASED DESIGN LAB  Core Courses  2  2  50 
ELE681  PROJECT LAB  Discipline Specific Electives  2  2  50 
MAT631  COMPLEX ANALYSIS  Core Courses  3  3  100 
MAT641A  MECHANICS  Discipline Specific Electives  3  3  100 
MAT641B  NUMERICAL METHODS  Discipline Specific Electives  3  3  100 
MAT641C  DISCRETE MATHEMATICS  Discipline Specific Electives  3  3  100 
MAT641D  NUMBER THEORY  Discipline Specific Electives  3  3  100 
MAT641E  FINANCIAL MATHEMATICS  Discipline Specific Electives  3  3  100 
MAT651  COMPLEX ANALYSIS USING PYTHON  Core Courses  2  2  50 
MAT651A  MECHANICS USING PYTHON  Discipline Specific Electives  2  2  50 
MAT651B  NUMERICAL METHODS USING PYTHON  Discipline Specific Electives  2  2  50 
MAT651C  DISCRETE MATHEMATICS USING PYTHON  Discipline Specific Electives  2  2  50 
MAT651D  NUMBER THEORY USING PYTHON  Discipline Specific Electives  2  2  50 
MAT651E  FINANCIAL MATHEMATICS USING EXCEL AND PYTHON  Discipline Specific Electives  2  2  50 
PHY631  MODERN PHYSICS  II  Core Courses  3  3  100 
PHY641A  SOLID STATE PHYSICS  Discipline Specific Electives  3  03  100 
PHY641B  QUANTUM MECHANICS  Discipline Specific Electives  3  3  100 
PHY641C  NUCLEAR AND PARTICLE PHYSICS  Discipline Specific Electives  3  3  100 
PHY651  MODERN PHYSICS  II LAB  Core Courses  2  2  50 
PHY651A  SOLID STATE PHYSICS LAB  Discipline Specific Electives  2  02  50 
PHY651B  QUANTUM MECHANICS LAB  Discipline Specific Electives  2  2  50 
PHY651C  NUCLEAR AND PARTICLE PHYSICS LAB  Discipline Specific Electives  2  2  50 
 
Introduction to Program:  
Mathematics: The undergraduate course in Mathematics is designed to enable the students to lay a strong foundation in various fields of Mathematics. The course enables the students to develop a respectable intellectual level seeking to expose the various concepts in Mathematics. It also aims at enhancing the students reasoning, analytical and problem solving skills. The first four semesters are devoted to appreciate the beauty of mathematics through Differential Calculus, Differential Equations, Real Analysis and Algebra. In order to help the students in exploration of mathematical concepts through activities and exploration, FOSS (Free and Open Source Software) tools and the computer language "Python" are introduced. Students find better perceptions of the classical courses like Linear Algebra, Complex Analysis and the elective courses.  
Programme Outcome/Programme Learning Goals/Programme Learning Outcome: PO1: Understand and apply the fundamental principles, concepts and methods in key areas of science and multidisciplinary fieldsPO2: Demonstrate problem solving, analytical and logical skills to provide solutions for the scientific requirements PO3: Demonstrate critical thinking with scientific temper PO4: Communicate the subject effectively PO5: Understand the importance and judicious use of technology for the sustainable growth of mankind in synergy with nature PO6: Understand the professional, ethical and social responsibilities PO7: Enhance the research culture and uphold the scientific integrity and objectivity PO8: Engage in continuous reflective learning in the context of technological and scientific advancements Programme Specific Outcome: PSO1: Demonstrate the problem solving skills in mathematical and physical sciences.PSO2: Express proficiency in oral and written communications to appreciate innovation in research. PSO3: Use software effectively for mathematical modelling. PSO4: Demonstrate industryfocused skills to lead a successful career PSO5: Take competitive exams such as JAM and JEST. PSO6: Demonstrate skill set enhancement through focused experimental programs and computational exercises. PSO7: Understand the impact of chemicals in societal and environmental context PSO8: Enhance the research culture and uphold the scientific integrity and objectivity.  
Assesment Pattern  
Exam pattern for theory
 
Examination And Assesments  
Continuous Internal assessment ( CIA) forms 50% and the end semester examination forms the other 50% of the marks in theory. CIA marks are awarded based on the their performance in assignments, MSE and class assignments ( Quiz, presentations, Moodle based tests, problem solving, minor projects, MOOC etc.). The MSE & ESE for each theory paper is of two & three hours respectively. CIA I and CIA III are conducted by respective faculty in the form of different types of assignments. MSE will be held for odd semesters in the month of August and even semesters in the month of January. ESE:The theory as well as practical courses are held at the end of the semesters. 
AEN121  ADDITIONAL ENGLISH (2021 Batch)  
Total Teaching Hours for Semester:45 
No of Lecture Hours/Week:3 
Max Marks:100 
Credits:3 
Course Objectives/Course Description 

The Additional English course is offered as a second language course and seeks to introduce the students to the nuances of English literature in its varied forms and genres. The students who choose Additional English are generally proficient in the English language. Hence, instead of focusing on introducing them to language, challenging texts in terms of ideas, form, and technique are chosen. Additional English as a course is designed for students in place of a regional language. NonResident Indians (NRIs), foreign nationals and students who have not taken Hindi, Kannada, Tamil or French at the Plus 2 or Class XII levels are eligible to choose Additional English. The course is taught for students from different streams, namely, BA, BSc, BCom, and BBA in the first year and for BA, BSc and BCom (Regular) in the second year. The first year syllabus is an attempt by the Department of English, Christ University to recognize and bring together the polyphonic Indian and Indian subcontinental voices in English in English translation for the Additional English students of the first year. This effort aims to familiarize the students with regional literatures in translation, Indian Writing in English (IWE) and literatures from Pakistan, Nepal and Srilanka, thereby, enabling the students to learn more about Indian culture and ethos through writings from different regions of the country. We have tried to represent in some way or the other the corners of India and the Indian subcontinent in this microcosmic world of short stories, poems and essays
There is a prescribed text bookfor the first year students, compiled by the Department of English, Christ University and intended for private circulation. The first semester has a variety of writing from India, Pakistan and Nepal. The various essays, short stories and poems deal with various socioeconomic, cultural and political issues that are relevant to modern day India and the Indian subcontinent and will enable students to comprehend issues of identitypolitics, caste, religion, class, and gender. All of the selections either in the manner of their writing, the themes they deal with or the ideologies that govern them are contemporary in relevance and sensibility, whether written by contemporary writers or earlier writers. An important addition to this syllabus is the preponderance of NorthEastern writing which was hitherto not well represented. Excerpts from interviews, autobiographical writings, sports and city narratives are added to this section to introduce students to the varied genres of literature. The objectives of this course are to expose students to the rich literary and cultural diversity of Indian literatures to sensitise students on the social, political, historical and cultural ethos that has shaped the nation INDIA to enable to grasp and appreciate the variety and abundance of Indian writing, of which this compilation is just a passing glance to learn and appreciate India through association of ideas in the texts and the external contexts (BhashaUtsav will be an intrinsic help in this endeavour)


Course Outcome 

CO1 CO 2: Understand the cultural, social, religious and ethnic diversities of India they will be able to be analytical and critical of the pluralistic society they live in through the activities and assignments conducted be aware of the dynamics of gender, identity, communalism and politics of this vast nation through its literature. 
Unit1 
Teaching Hours:10 
Poetry


1. Keki N Daruwala “Migrations”
2. Kamala Das “Forest Fire”
3. Agha Shahid Ali “Snow on the Desert”
4. Eunice D Souza “Marriages are Made”  
Unit2 
Teaching Hours:15 
Short Stories


1. Rabindranath Tagore “Babus of Nayanjore”
2. Ruskin Bond “He said it with Arsenic”
3. Bhisham Sahni “The Boss Came to Dinner”
4. N. Kunjamohan Singh “The Taste of Hilsa”
5. Mohan Thakuri “Post Script”  
Unit3 
Teaching Hours:20 
Essays


1. Mahatma Gandhi “What is True Civilization?” (Excerpts from Hind Swaraj)
2. Ela Bhatt “Organising for Change”
3. Sitakant Mahapatra “Beyond the Ego: New Values for a Global Neighborhood
4. B R Ambedkar “Waiting for A Visa”
 
Text Books And Reference Books: Contemporary knowledge of the socipolitical situation in the subcontinent The text book copy "Reading Diversity"  
Essential Reading / Recommended Reading Online resources to appreciate the text through the Comprehension Questions  
Evaluation Pattern CIA 1: Classroom assignment for 20 marks keeping in mind the objectives and learning outcomes of the course. CIA 2: Midsemester written exam for 50 marks CIA 3: Collage, tableaus, skits, talk shows, documentaries, Quizzes or any proactive creative assignments that might help students engage with India as a cultural space. This is to be done keeping in mind the objectives and learning outcomes of the course. Question Paper Pattern Mid Semester Exam: 2 hrs Section A: 4x5= 20 Section B: 2x15=30 Total 50
End Semester Exam: 2 hrs Section A: 4 x 5 = 20 Section B: 2 x 15= 30 Total 50  
ELE131  NETWORK ANALYSIS AND ANALOG ELECTRONICS (2021 Batch)  
Total Teaching Hours for Semester:60 
No of Lecture Hours/Week:4 
Max Marks:100 
Credits:4 
Course Objectives/Course Description 

Electronic devices and circuits are an integral part of day to day life. In order to enter the real world of Electronics, it is essential to have a course on Electronics devices and applications. This module starts with foundations of various networks and theorems used in Electronics. The basic principles and applications of basic devices such as diodes and transistors that revolutionized the world are covered. The concept of feedback and principles of sinusoidal oscillators are also introduced. The unit on Unipolar devices deals with the theory and applications of field effect transistors and UJT. The primary objectives of this course is · To learn the basic methods of analysing electrical dc networks using different network theorems. · To understand the principle and applications of half wave rectifier, full wave rectifier, filter circuits · To study the basic theory of bipolar junction transistor, various transistorbiasing techniques and transistor applications · To study the concept of feedback and basics of sinusoidal oscillators To understand the principles of FET and UJT


Course Outcome 

CO1: Extend the basic skills in electronics towards starting entrepreneurship of local and regional needs. CO2: Illustrate the basic methods of solving electrical dc networks using different network theorems. CO3: Underline the theory and applications of diodes and Zener diodes, FET and UJT. CO4: Understand the basic theory of bipolar junction transistor, various transistorbiasing techniques, and transistor applications CO5: Demonstrate the concept of feedback and basic principles of sinusoidal oscillators 
Unit1 
Teaching Hours:15 

Circuit Analysis


Review of electronic components. concept of voltage and current sources. voltage and current divider circuits, kirchhoff’s current law, kirchhoff’s voltage law. mesh analysis. node analysis. superposition theorem. thevenin’s theorem. norton’s theorem. reciprocity theorem. maximum power transfer theorem.  
Unit2 
Teaching Hours:15 

Junction Diode and its Applications


PN junction diode (ideal and practical) constructions, formation of depletion layer, diode equation and IV characteristics. static and dynamic resistances, dc load line analysis, rectifiers half wave rectifier, full wave rectifiers (center tapped and bridge), ripple factor and efficiency. filter shunt capacitor filter, its role in power supply, regulation line and load regulation, zener diode, zener and avalanche breakdown. zener diode as voltage regulatorload and line regulation, schottky diode.
 
Unit3 
Teaching Hours:15 

Bipolar Junction Transistor


Review of the characteristics of transistor in CE and CB configurations, regions of operation (active, cut off and saturation), current gains α and β. relations between α and β. dc load line and q point. transistor biasing and stabilization circuits fixed bias and voltage divider bias. thermal runaway, stability and stability factor s. transistor as a two port network, hparameter equivalent circuit. small signal analysis of single stage CE amplifier. input and output impedance, current and voltage gains. Class A, B and C Amplifiers. Two stage RC coupled amplifier and its frequency response.
 
Unit4 
Teaching Hours:15 

Sinusoidal Oscillators


Feedback in amplifiers: concept of feedback, negative and positive feedback, advantages of negative feedback (qualitative only). sinusoidal oscillators: Barkhausen criterion for sustained oscillations. Hartley and Colpitts oscillators. determination of frequency and condition of oscillation. JFET. construction, working and iv characteristics (output and transfer), pinch off voltage, parameters. MOSFET–principle and construction, UJT, basic construction, working, equivalent circuit and IV characteristics., applications.  
Text Books And Reference Books: [1] S. A. Nasar,” Electric Circuits”, Schaum’s outline series, Tata McGraw Hill, 2004. [2] A.P Malvino, “Principles of Electronics”, 7^{th} edition ,TMH, 2011. [3] Robert L Boylestad, “Introductory circuit analysis”, 5^{th} edition, Universal Book Stall 2003. [4] R.S.Sedha, “A Text book of Applied Electronics”, 7^{th} edition, S.Chand and Company Ltd. 2011.
 
Essential Reading / Recommended Reading [1] M. Nahvi & J. Edminister, “Electrical Circuits”, Schaum’s Outline Series, Tata McGraw Hill, 2005 [2] David A. Bell “ Electronic Devices and Circuits”, 5th Edition, Oxford University Press, 2015 [3] A.S. Sedra, K.C. Smith, A.N. Chandorkar “Microelectronic circuits”, 6th Edn., Oxford University Press, 2014. [4] J Millman and C. C. Halkias, “Integrated Electronics”, Tata McGraw Hill, 2001.
 
Evaluation Pattern
 
ELE151  NETWORK ANALYSIS AND ANALOG ELECTRONICS LAB (2021 Batch)  
Total Teaching Hours for Semester:30 
No of Lecture Hours/Week:2 

Max Marks:50 
Credits:2 

Course Objectives/Course Description 

This practical course covers the study of network theorems, provides an overview of the principle, operation and applications of the electronic devices like diode and transistor. It provides hands on experience of circuit construction on breadboard, measurement of electrical parameters using Digital multimeter and Cathode ray oscilloscope (CRO).
To provide fundamental practical knowledge that enables the students to
· effectively use the multimeter, CRO and measure electrical parameters
· identify electronic components and construct the circuit on solder less bread board
· verify network theorems (DC), study working of diode and transistor circuits
· plot characteristics curves and output waveforms on graph sheet


Course Outcome 

CO1: Acquire basic skills in handling the lab equipment effectively and safely CO2: Use basic electrical DC concepts and theorems to analyse circuits. CO3: Build and simulate electrical DC circuits and perform measurements with electronic test equipment. CO4: Demonstrate how to construct a circuit and study the circuit performance 
Unit1 
Teaching Hours:30 

List of Experiments


Online Experiments using virtual lab/simulation using electronic work bench 1. Verification of Kirchhoff’s voltage and current laws 2. Verification of Thevenin’s and Norton’s theorem. 3. Verification of the maximum power transfer theorem. 4. Study of Zener voltage regulator 5. Study of CE characteristics of a transistor 6. Study of Hartley’s Oscillator. Offline Experiments: 1. To familiarize with basic electronic components and equipments (R, C, L, diodes, transistors), digital multimeter, function generator and oscilloscope. 2. Verification of superposition theorem 3. Study of the IV Characteristics of (a) pn junction diode, and (b) Zener diode. 4. Study of (a) half wave rectifier and (b) Full wave rectifier (FWR). 5. Study the effect of (a) C filter and (b) Zener regulator on the output of FWR. 6. Study of Fixed Bias and Voltage divider bias configuration for CE transistor. 7. Measurement of amplitude, frequency & phase difference using oscilloscope. 8. Design of a single stage CE amplifier of given gain. 9. Study of the Colpitt’s oscillator.  
Text Books And Reference Books: [1] A.P Malvino, (2016). Principles of Electronics, (8^{th }edition) ,TMH.. [2] Robert L Boylestad,(2014)Introductory circuit analysis, (12^{th} edition), Universal Book Stall. [3] R.S.Sedha,(2019)A Text book of Applied Electronics, (Revised Edition), S.Chand and Company Ltd.  
Essential Reading / Recommended Reading [1] David A. Bell (2015)“ Electronic Devices and Circuits, (5th Edition), Oxford University Press, [2] A.S. Sedra, K.C. Smith, A.N. Chandorkar (2014 ). Microelectronic circuits, (6th Edn)., Oxford University Press  
Evaluation Pattern
 
ENG121  ENGLISH  I (2021 Batch)  
Total Teaching Hours for Semester:45 
No of Lecture Hours/Week:3 

Max Marks:100 
Credits:2 

Course Objectives/Course Description 

· To help improve their communication skills for larger academic purposes and vocational purposes · To enable learners to learn the contextual use of words and the generic meaning · To enable learners to listen to audio content and infer contextual meaning · To enable learners to be able to speak for various purposes and occasions using context specific language and expressions · To enable learners to develop the ability to write for various purposes using suitable and precise language. 

Course Outcome 

CO1: Understand how to engage with texts from various countries, historical, cultural specificities and politics CO2: Understand and develop the ability to reflect upon and comment on texts with various themes CO3: Develop an analytical and critical bent of mind to compare and analyze the various literature they read and discuss in class CO4: Develop the ability to communicate both orally and in writing for various purposes 
Unit1 
Teaching Hours:6 
Unit 1 1. The Happy Prince By Oscar Wilde 2. Shakespeare Sonnet 18


Unit1 
Teaching Hours:6 
language


Common errors subjectverb agreement, punctuation, tense errors
 
Unit2 
Teaching Hours:6 
unit 2


1. Why We TravelPico Iyer 2. What Solo Travel Has Taught Me About the World – and Myself ShivyaNath Blogpost
 
Unit2 
Teaching Hours:6 
language


sentence fragments, dangling modifiers, faulty parallelism,  
Unit3 
Teaching Hours:6 
language


Note taking  
Unit3 
Teaching Hours:6 
unit 3


1. Thinking Like a Mountain By Aldo Leopold 2. Short Text: On Cutting a Tree By Gieve Patel  
Unit4 
Teaching Hours:6 
unit 4


1. Violence in the name of God is Violence against God By Rev Dr Tveit
2. Poem: Holy Willie's Prayer By Robert Burns  
Unit4 
Teaching Hours:6 
language


Paragraph writing  
Unit5 
Teaching Hours:6 
Language


Newspaper report  
Unit5 
Teaching Hours:6 
unit 5


1. The Story of B24 By Sir Arthur Conan Doyle 2. Short Text: Aarushi Murder case
 
Unit6 
Teaching Hours:6 
unit 6


1.Long text:My Story Nicole DeFreece
2. short text: Why You Should Never Aim for Six Packs
 
Unit6 
Teaching Hours:6 
Language


Essay writing  
Unit7 
Teaching Hours:6 
unit 7


1.Long Text: Sir Ranjth Singh Essay by SouravGanguly 2. Short text: Casey at the Bat Ernest Lawrence Thayer  
Unit7 
Teaching Hours:6 
Language


Paraphrasing and interpretation skills  
Unit8 
Teaching Hours:3 
visual text


Visual Text: Before the Flood  
Text Books And Reference Books: ENGlogue 1  
Essential Reading / Recommended Reading Addfitional material as per teacher manual will be provided by the teachers  
Evaluation Pattern CIA 1=20 CIA 2=50 CIA 3= 20 ESE= 50 marks online and 50 marks written exam  
FRN121  FRENCH (2021 Batch)  
Total Teaching Hours for Semester:45 
No of Lecture Hours/Week:3 
Max Marks:100 
Credits:3 
Course Objectives/Course Description 

French as a second language in the UG program. The method Génération A1 consists of a student's book and an activity book, both included in the digital manual. It consists of 6 units preceded by an initial section of 'Welcome'. The structure of each unit marks a real learning journey.
Course Objectives · To develop linguistic competencies and sharpen oral and written communicative skills · To familiarize learners to certain aspects of francophone civilization. · To enable learners to engage in simple everyday situations 

Course Outcome 

CO 1: To familiarize students with communicative French CO 2: To equip students with proper comprehensive skill of listening and writing CO 3: To make students read, write, speak and listen to French lessons CO 4: To make students speak and read French texts CO 5: To enable students to learn French words. 
Unit1 
Teaching Hours:10 

I discover


Lexicon – Countries and nationalities, domestic animals, days of the week Grammar Subject pronouns, verbs ‘to be’ and ‘to have’, definite and indefinite articles Speech acts – Greeting, asking how one is
Lesson 2: Hello, my name is Agnes. Lexicon – Months of the year, numbers 069, the family Grammar – Formation of the feminine / plural, possessive adjectives Speech acts Introducing oneself and others, asking and saying dates
 
Unit2 
Teaching Hours:5 

Les fables de la Fontaine


La cigale et la fourmis (The grasshopper and the ant)  
Unit3 
Teaching Hours:10 

Culture: Physical and Political France


 
Unit4 
Teaching Hours:5 

Les fables de la Fontaine


Le renard et le corbeau (The fox and the crow)  
Unit5 
Teaching Hours:10 

Video Workshop: How cute he is!


 
Unit6 
Teaching Hours:5 

Visual text


A French movie  
Text Books And Reference Books: 1. Cocton, MarieNoelle. Génération A1. Paris : Didier, 2016 2. De Lafontaine, Jean. Les Fables de la Fontaine. Paris, 1668  
Essential Reading / Recommended Reading French websites like Bonjour de France, Fluent U French, Learn French Lab, Point du FLE etc  
Evaluation Pattern
 
HIN121  HINDI (2021 Batch)  
Total Teaching Hours for Semester:45 
No of Lecture Hours/Week:3 

Max Marks:100 
Credits:3 

Course Objectives/Course Description 

Course Description The detailed text book “Samakaleen Hindi Kavitha” edited by Dr.N Mohanan is an anthology of contemporary Hindi Poems written by representative poets of Hindi Literature. From the medieval poetry ' Kabir Ke Dohe and Sur ke pad 'is also included. The poets reflect on the social, cultural and political issues which are prevalent in our society since the medieval period. Hindusthani sangeethparampara eva kalakar is one of the module. Since translation is a significant area in language and literature, emphasis is being given on it in the syllabus.Bharath ki pramukh sanskruthik kalayein Yakshagana,Kathakali,Ram Leela,Krishna Leela etc. included in the syllabus to enrich cultural values among students. Course Objectves: Students will be exposed to read, analyse and appreciate poems by learning poetry. Through translation, students will be able to develop translation skills while translating from other language articles. Students will be able to analyses critically the different cultural art forms by learning about the Famous cultural art forms of India. 

Course Outcome 

CO1 : Improve the analytical skills through critical analysis of the poems. CO2: Analyze the different aspects of Hindustani musical traditions and musicians. CO3: Improve the basic research skills while doing the research based CIAs. CO4: Enhance the bilingual translation skills. 
Unit1 
Teaching Hours:15 
Samakaleen Hindi Kavitha (Collection of contemporary Hindi Poems),Kabir Ke Dohe and Sur Ke Pad.


’ Samakaleen Hindi Kavitha (Collection ofcontemporary Poems) Edited By: Mahendra Kulashreshta Rajpal and Son’s, New Delhi
Level of knowledge: Analytical
 
Unit2 
Teaching Hours:10 
TranslationTheory and Practice


TranslationPractice English to Hindi and vice versa.  
Unit3 
Teaching Hours:10 
Bharath ki pramukh sanskruthic kalayen


Ramleela,Krishnaleela,Yakshagaana,kathakali.  
Unit4 
Teaching Hours:10 
Hindusthani Sangeethparampara evam pramukh kalakar


Utbhav,Vikas aur paramparaein Pramukh Sangeethkar1.Bhimsen Joshi 2.Gulam Ali 3.Pandit Ravishankar 4. Bismillah Khan.  
Text Books And Reference Books:
 
Essential Reading / Recommended Reading
1. A Hand Book of Translation Studies By: Das Bijay Kumar. 2. Saral Subodh Hindi Vyakaran, By: Motilal Chaturvedi. Vinod pustak mandir, Agra2 3. Anuvad Evam Sanchar – Dr Pooranchand Tantan, Rajpal and Son’s, Kashmiri 4. Anuvad Vignan By: Bholanath Tiwar 5. Anuvad Kala By: N.E Vishwanath Iyer.
 
Evaluation Pattern CIA1(Digital learningEditing of Hindi article in Hindi Wikipedia )20 marks CIA2(Mid semester examination)50 marks CIA3(Digital learningarticle creation in Hindi Wikipedia)20 marks End sem examination50 marks  
KAN121  KANNADA (2021 Batch)  
Total Teaching Hours for Semester:45 
No of Lecture Hours/Week:3 
Max Marks:100 
Credits:03 
Course Objectives/Course Description 

Selections from Old Kannada, Medieval Kannada and Modern Kannada Literature are introduced for I Semester BA/ BSc. courses in the syllabus. This will enrich the students' Language and Communication skills, and also their critical and analytical skills. This will help them to enhance their social sensitivity. The rhythm of poetry helps the students to acquire natural speech rhythm. 

Course Outcome 

CO 1: understand different genres of Kannada Literature CO2: expose students to significant developments in poetry CO3: develop the art of constructing stories CO4 : communicate in Kannada orally & in writing CO5 : summarize the events of a story in a concise manner 
Unit1 
Teaching Hours:15 
Old , Medieval and Modern Kannada Literature


1. Raghavanka Harishchandra Kavya. Selected chapter( Purada Punyam Purusha Roopinde Pooguthide) 2. Vachanas Devara Dasimayya, Basavanna, Akkamahadevi, Aydakki Lakkamma, Gajesha Masanaiah. Keerthanegalu: Purandaradasa, Kanakadasa 3. Modern Kannada poetry: Mumbai Jataka Dr. G.S. Shivarudrappa, Kari Heggadeya Magalu B.M.Sri  
Unit2 
Teaching Hours:10 
Prose Selected Short Stories


1. Dheera Kumara A Folk tale 2. Mandannana Marriage (An episode in Novel Karvalo) K. P. Poornachandra Tejaswi 3. Gili Kathe(Translation)  Ravindranath Tagore  
Unit3 
Teaching Hours:10 
Kannada Grammar


1. Differences in Prounounciation ( Ll) (AH) 2. Change of meanings 3. Translation: English to Kannada
 
Unit4 
Teaching Hours:10 
Folk Art forms of Karnataka


1.Folk Art forms of Karnataka 1. Dollu Kunitha 2.Pooja Kunitha 3.Goravara Kunita 4. Patada Kunitha  
Text Books And Reference Books: 1. Adipurana Pampa (Selected Episode) 2. Yashodhara Charite Janna (Selected Episode) 3. Harishchandra Kavya Raghavanka (Selected Episode) 4. Shree Sahitya B M Shreekantaiah 5. Janapada Kathegalu Jee sham paramashivaiah  
Essential Reading / Recommended Reading 1. Pampa Ondu Adhyayana G S Shivarudrappa 2. Vachana Chandrike L Basavaraju 3. Purandara Sahitya Darshana S K Ramachandra Rao 4. Kanakadasa Basrur Subba Rao 5. Samagra Kannada Sahitya Charithre Ed. G.S Shivarudrappa
 
Evaluation Pattern CIA1 Written Assignments 20 Marks CIA2 Mid Semsester Examination 50 Marks CIA3 Translation Assignment English to Kannada 20 Marks Attendance 05 Marks End Semester Examination 50 Marks  
MAT131  DIFFERENTIAL CALCULUS (2021 Batch)  
Total Teaching Hours for Semester:60 
No of Lecture Hours/Week:4 
Max Marks:100 
Credits:4 
Course Objectives/Course Description 

Course Description: This course aims at enabling the students to know various concepts and principles of differential calculus and its applications. Sound knowledge of calculus is essential for the students of mathematics for the better perceptions of the subject and its development. Course objectives: This course will help the learner to COBJ1. Gain familiarity with the concepts of limit, continuity and differentiability. COBJ2. Understand the relationship between the concepts of differentiability and continuity. COBJ3. Analyse and interpret the different versions of mean value theorems. COBJ4. Learn successive differentiation and nth derivative of product of two functions. COBJ5. Find derivative of functions of more than one variable. COBJ6. Be familiar with curve tracing. 

Course Outcome 

CO1: Compute limits, derivatives and examine the continuity, differentiability of a function at a point. CO2: Understand the properties of continuous functions and prove that differentiability implies continuity. CO3: Prove Mean value theorems and analyse its geometric interpretation. CO4: Compute derivatives of any order and apply Leibniz? theorem to find nth derivative of product of two functions. CO5: Master the fundamental concepts of partial differentiation and apply Euler?s theorem for homogeneous functions. CO6: Gain knowledge on the concepts such as asymptotes, concavity/convexity and singular points and apply the same for curve tracing. 
Unit1 
Teaching Hours:20 

Limits, Continuity, Differentiability and Mean Value Theorems


Definition of the limit of a function (εδ) form – Continuity, Uniform Continuity – Types of discontinuities – Properties of continuous functions on a closed interval  Boundedness theorem and extreme value theorem – Differentiability – Mean Value Theorems: Rolle’s theorem – Lagrange’s and Cauchy’s First Mean Value Theorems – Taylor’s theorem (Lagrange’s form and Cauchy’s forms of remainder) – Maclaurin’s theorem and expansions Indeterminate forms. .  
Unit2 
Teaching Hours:20 

Successive and Partial Differentiation


Successive differentiation – nth derivatives of functions – Leibnitz theorem and its applications – Partial differentiation – First and higher order derivatives – Differentiation of homogeneous functions – Euler’s theorem – Taylor’s theorem for two variables (only statements and problems) Maxima and Minima of functions of two variables.  
Unit3 
Teaching Hours:20 

Curve Tracing


Tangents and Normals, Concavity and convexity, Curvature, Asymptotes, Singular points, Tracing of curves (Parametric representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in polar coordinates)..  
Text Books And Reference Books: G.B. Thomas, M.D.Weir and J. Hass, ThomasCalculus, 12th ed., Pearson Education India, 2015.  
Essential Reading / Recommended Reading
 
Evaluation Pattern
 
MAT151  INTRODUCTION TO PYTHON PROGRAMMINGI (2021 Batch)  
Total Teaching Hours for Semester:30 
No of Lecture Hours/Week:2 

Max Marks:50 
Credits:2 

Course Objectives/Course Description 

Course Description: Introduction to Python Programming1 provides a foundational background for programming in a mathematical setting. Students will learn the basics of object orientated programming, algorithm, flow chart, memory storage, variable scoping, modules, objects and classes, and basic data structures. Course objectives: This course will help the learner to COBJ1: Acquire proficiency in using Python Programming. COBJ2: Demonstrate the use of Python to understand and interpret the some concepts in Mathematics. 

Course Outcome 

CO1: Write algorithms, flow chart and codes. CO2: Use modules and functions in python language. CO3: Acquire proficiency in using conditional structures. CO4: Solve problems using control structures. CO5: Use python lists, tuples and dictionaries. CO6: Write small programs using python programming. 
Unit1 
Teaching Hours:30 

Proposed Topics:


 
Text Books And Reference Books:
 
Essential Reading / Recommended Reading
 
Evaluation Pattern The course is evaluated based on continuous internal assessments (CIA) and the lab erecord. The parameters for evaluation under each component and the mode of assessment are given below.
 
PHY131  MECHANICS (2021 Batch)  
Total Teaching Hours for Semester:60 
No of Lecture Hours/Week:4 

Max Marks:100 
Credits:04 

Course Objectives/Course Description 

This course is aimed to provide a thorough knowledge of the basics of kinematics, gravitation, work, energy, oscillations, properties of matter and special theory of relativity. Each topic includes problemsolving which develops the thinking process and application skills of the students. 

Course Outcome 

CO1: By the end of the course, the learner will be able to Understand and conceptualize the forces acting on static and dynamic systems. Solve problems related to kinematic and dynamic aspects of motion. Analyse oscillatory motion, and evaluate SHM. Understand and apply the constraints set by the special theory of relativity. 
Unit1 
Teaching Hours:15 
Laws of Motion


Scalars and vectors, types of vectors, Vector algebraVector addition and subtraction, Graphical and analytical methods, components of vectors, Scalar and vector products, applications for scalar and vector products, Vector derivatives, 1st order and secondorder differential equations. Motion in one dimensionMotion with uniform velocity, uniform acceleration and nonuniform acceleration, Motion in two dimensionsprojectile motion Motion along a curve in a plane (radial and transverse components of velocity and acceleration), examples. Drag force terminal velocity, Frames of reference Inertial and noninertial, two frames of reference moving with uniform relative velocity, uniform acceleration, rotating frames, fictitious forcesExamples(Banking of curved railway track, Accelerometer, freely falling elevator). Newton’s Laws of motion. First, second and third laws, Conservative and nonconservative forces, Dynamics of a system of particles., Definition of centre of mass, centre of mass of two particles, group of particles, continuous bodies, uniform straight rod, motion of the centre of mass.  
Unit2 
Teaching Hours:15 
Momentum and Energy


Conservation of momentum and energy, workenergy theorem, motion of rockets. Rotational motion: Angular velocity and angular momentum, torque, conservation of angular momentum. Fluids: Surface tension: Synclastic and antisynclastic surface  Excess of pressure  Application to spherical and cylindrical drops and bubbles  variation of surface tension with temperature  Jaegar’s method, Drop weight method. Viscosity: Viscosity  Rate flow of liquid in a capillary tube  Poiseuille’s formula  Determination of coefficient of viscosity of a liquid  Stoke's method, Variation of viscosity of a liquid with temperature  
Unit3 
Teaching Hours:15 
Gravitation and Oscillations


Newton’s law of gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler’s Laws (qualitative). Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of Global Positioning System (GPS). Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations.  
Unit4 
Teaching Hours:15 
Elasticity and Relativity


Elasticity: Hooke’s law  Stressstrain diagram  Elastic moduliRelation between elastic constants  Poisson’s RatioExpression for Poisson’s ratio in terms of elastic constants  Work done in stretching and work done in twisting a wire  Twisting couple on a cylinder  Determination of rigidity modulus by static torsion  Torsion pendulumDetermination of Rigidity modulus and moment of inertia  q, η and σ by Searle’s method. Special theory of relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities.  
Text Books And Reference Books:
[1].Resnick, R., Walker, J., & Halliday, D. (2015). Principles of physics (9^{th} ed.): Wiley. [2].Kittel, C. (2007). Mechanics: Berkeley physics course, Vol. 1: Tata McGraw Hill. [3].Sears, F. W., Zemansky, M. W., & Young H. D. (1986). University Physics: Addison Wesley.  
Essential Reading / Recommended Reading
[1].Basudeb, B. (2015). Engineering mechanics (2^{nd} ed.): Oxford University Press. [2].Ronald, L. R. (2003). University physics: Thomson Brooks.  
Evaluation Pattern
