|
|
|
3 Semester - 2021 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU332P | THERMODYNAMICS AND THERMAL ENGINEERING | Core Courses | 5 | 4 | 100 |
AU334P | FLUID MECHANICS AND FLUID MACHINES | Core Courses | 5 | 4 | 100 |
BS351 | ENGINEERING BIOLOGY LABORATORY | Core Courses | 2 | 2 | 50 |
EVS321 | ENVIRONMENTAL SCIENCE | Add On Courses | 2 | 0 | 0 |
HS321 | PROFESSIONAL ETHICS | Core Courses | 2 | 2 | 3 |
MA331 | MATHEMATICS - III | Core Courses | 3 | 3 | 100 |
ME333P | STRENGTH OF MATERIALS | Core Courses | 5 | 4 | 100 |
4 Semester - 2021 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU431 | AUTOMOTIVE POWER TRAIN | Core Courses | 2 | 2 | 50 |
AU432P | AUTOMOTIVE MATERIALS AND MANUFACTURING TECHNOLOGY | Core Courses | 5 | 4 | 100 |
AU433P | AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS | Core Courses | 5 | 4 | 100 |
AU434P | AUTOMOTIVE ENGINES | Core Courses | 5 | 4 | 100 |
AU435 | KINEMATICS AND THEORY OF MACHINES | Core Courses | 3 | 3 | 100 |
AU436 | ENTREPRENEURSHIP DEVELOPMENT | Core Courses | 2 | 2 | 100 |
CY421 | CYBER SECURITY | Skill Enhancement Courses | 2 | 0 | 0 |
5 Semester - 2020 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU531 | DESIGN OF AUTOMOTIVE COMPONENTS | Core Courses | 3 | 3 | 100 |
AU532 | AUTOMOTIVE ENGINE SYSTEMS | Core Courses | 3 | 3 | 100 |
AU533 | COMPUTER AIDED MACHINE DRAWING | Core Courses | 4 | 4 | 100 |
AU544E1 | AUTOMOTIVE AERODYNAMICS | Discipline Specific Elective Courses | 3 | 3 | 100 |
AU551 | COMPUTATIONAL LABORATORY | Core Courses | 2 | 1 | 50 |
AU552 | AUTOMOTIVE SERVICING AND TEARDOWN LAB | Core Courses | 2 | 1 | 50 |
CEOE561E01 | SOLID WASTE MANAGEMENT | Generic Elective Courses | 3 | 3 | 100 |
CEOE561E03 | DISASTER MANAGEMENT | Generic Elective Courses | 3 | 3 | 100 |
HS522 | PROJECT MANAGEMENT AND FINANCE | Core Courses | 2 | 2 | 50 |
IC521 | INDIAN CONSTITUTION | Add On Courses | 2 | 0 | 50 |
MA536OE6 | APPLIED STATISTICS | Generic Elective Courses | 3 | 2 | 50 |
6 Semester - 2020 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU631 | AUTOMATIVE EMISSIONS AND CONTROL | Core Courses | 2 | 2 | 50 |
AU632 | AUTOMOTIVE CHASSIS AND SUSPENSION | Core Courses | 3 | 3 | 100 |
AU633P | HYBRID ELECTRIC VEHICLE AND RENEWABLE ENERGY | Core Courses | 4 | 3 | 75 |
AU635P | COMPUTER AIDED ENGINEERING | Core Courses | 4 | 3 | 75 |
AU637 | SERVICE LEARNING | Core Courses | 4 | 2 | 50 |
AU644E4 | TROUBLE SHOOTING SERVICING AND MAINTRNANCE OF AUTOMOBILES | Discipline Specific Elective Courses | 3 | 3 | 100 |
AU651 | ADVANCED MACHINING LABORATORY | Core Courses | 2 | 1 | 50 |
BTGE631 | CORPORATE SOCIAL RESPONSIBILITY | Generic Elective Courses | 2 | 2 | 100 |
BTGE634 | GERMAN | Generic Elective Courses | 2 | 2 | 100 |
BTGE636 | INTRODUCTION TO AVIATION | Generic Elective Courses | 2 | 2 | 100 |
BTGE651 | DATA ANALYTICS THROUGH SPSS | Generic Elective Courses | 2 | 2 | 100 |
BTGE652 | DIGITAL MARKETING | Generic Elective Courses | 2 | 2 | 100 |
BTGE653 | DIGITAL WRITING | Generic Elective Courses | 2 | 2 | 100 |
BTGE654 | PHOTOGRAPHY | Generic Elective Courses | 2 | 2 | 100 |
BTGE655 | ACTING COURSE | Generic Elective Courses | 2 | 2 | 100 |
BTGE656 | CREATIVITY AND INNOVATION | Generic Elective Courses | 2 | 2 | 100 |
BTGE657 | PAINTING AND SKETCHING | Generic Elective Courses | 2 | 2 | 100 |
BTGE658 | DESIGN THINKING | Generic Elective Courses | 2 | 2 | 100 |
7 Semester - 2019 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU733 | TWO AND THREE WHEELERS | Core Courses | 2 | 2 | 50 |
AU734 | ENGINEERING ECONOMICS AND AUTOMOTIVE COST ESTIMATION | Core Courses | 2 | 2 | 50 |
AU741E4 | NOISE VIBRATION AND HARSHNESS | Discipline Specific Elective Courses | 3 | 3 | 100 |
AU742E2 | TOTAL QUALITY MANAGEMENT | Discipline Specific Elective Courses | 3 | 3 | 100 |
AU744E1 | VEHICLE TRANSPORT MANAGEMENT | Discipline Specific Elective Courses | 3 | 3 | 100 |
AU751 | AUTOMATION LABORATORY | Core Courses | 2 | 1 | 50 |
AU752 | SIMULATION LABORATORY | Core Courses | 2 | 1 | 50 |
AU781 | PROJECT WORK PHASE I | Core Courses | 2 | 2 | 50 |
AU782 | INTERNSHIP | Core Courses | 4 | 2 | 50 |
CSOE763E04 | BASICS OF MOBILE APPLICATION DEVELOPMENT | Generic Elective Courses | 3 | 3 | 100 |
EC735OE01 | AUTOMOTIVE ELECTRONICS | Generic Elective Courses | 3 | 3 | 100 |
EE736OE01 | BATTERY MANAGEMENT SYSTEM FOR ELECTRIC VEHICLES | Generic Elective Courses | 3 | 3 | 100 |
MICS735 | DATABASE SYSTEM | Minors and Honours | 5 | 4 | 100 |
8 Semester - 2019 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU841E4 | NON-DESTRUCTIVE TESTING | Discipline Specific Elective Courses | 3 | 3 | 100 |
AU881 | PROJECT WORK PHASE II | Core Courses | 16 | 10 | 300 |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Program: | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This B.Tech (Automobile Engineering) program is designed to develop a new breed of engineers required for the ever expanding automotive industry. We strive to improve the technical and professional skills of the students through hands on and project based experiential We have a MoU with ARAI, Pune for the students admitted during and before 2020-21 and successful candidates of the program will be awarded B.Tech (Automobile Engineering) degree with the notation “In Academic Collaboration with ARAI”. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Programme Outcome/Programme Learning Goals/Programme Learning Outcome: PO1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.Programme Specific Outcome: PO2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.Programme Educational Objective: PO3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.PO4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. PO5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. PO6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. PO7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. PO11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one?s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. PO12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Assesment Pattern | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Practical Alone
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Examination And Assesments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
AU332P - THERMODYNAMICS AND THERMAL ENGINEERING (2021 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
1. Understanding of the first law of thermodynamics and various forms of work that can occur. 2. An ability to evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations. 3. An understanding of the use of the Gibbs and Helmholtz free energies as equilibrium criteria, and the statement of the equilibrium condition for closed and open systems.
|
|
Course Outcome |
|
CO1: Understand concept of temperature measurements, work and its interaction, heat and its interaction, different types of thermodynamics systems. CO2: Understand concept of reversibility and irreversibility, entropy and available energy. CO3: Evaluate efficiency of heat efficiency of heat engine and coefficient of performance of heat pump & refrigerator. CO4: Evaluate the properties of pure substance and efficiency of vapor power cycles using pure substance. CO5: Understand the concept of moist air and its effect on air-conditioning. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic Thermodynamics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction, Laws of thermodynamics, Steady flow energy equation, Concept of Entropy and Clausius, Properties of gases and vapours - Introduction to thermoelectricity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Air Standard Cycle and Compressors
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Otto – Diesel – Dual combustion and Brayton cycles – Air standard efficiency – Mean effective pressure – Reciprocating compressors. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Steam and Jet Propulsion
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Properties of steam – Rankine cycle – Jet propulsion system and rocket engines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Refrigeration and Air-Conditioning
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Principles of psychometry and refrigeration – Vapour compression – Vapour absorption types – Coefficient of performance – Properties of refrigerants – Basic Principle and types of Air conditioning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat Transfer
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conduction in parallel – Radial and composite wall – Basics of Convective heat transfer – Fundamentals of Radiative heat transfer – Flow through heat exchangers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. “Basic and Applied Thermodynamics” by P.K. Nag, Tata McGraw Hill, 3rd Edi. 2002 2. “Thermodynamics an engineering approach”, by Yunus A. Cenegal and Michael A. Boles. Tata McGraw hill Pub. 2002 3. Nag. P.K., “Basic and applied thermodynamics”, Tata McGraw-Hill, 2007. 4. S. Domkundwar, C.P. Kothandaraman, Anand Domkundwar “A Course in Thermal Engineering, Dhanpat Rai & Co., 2013
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Engineering Thermodynamics. By Rajput, Laxmi Publications pvt ltd., 3rd Edi. 2007. 2. Engineering Thermodynamics by J.B. Jones and G.A.Hawkins, John Wiley and Sons. 3. Thermo Dynamics by S.C.Gupta, Pearson Edu. Pvt. Ltd., 1st Ed. 2005. 4. Holman.J.P., “Thermodynamics”, McGraw-Hill, 2007 5. Arora C.P, “Thermodynamics”, Tata McGraw-Hill, 2003. 6. Radhakrishnan E., “Fundamentals of Engineering Thermodynamics”, Prentice-Hall India, 2005.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU334P - FLUID MECHANICS AND FLUID MACHINES (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
To learn about the application of mass and momentum conservation laws for fluid flows To understand the importance of dimensional analysis To obtain the velocity and pressure variations in various types of simple flows To analyse the flow in water pumps and turbines.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain pressure measurement by simple and differential manometer using Pascals law, and explain viscosity, surface tension and capillarity by comprehending the properties of fluids. CO2: Determine metacentric height using conditions of equilibrium, and explain stream function, potential function and vorticity using basic concepts of inviscid flow. CO3: Execute derivation of Bernoulli?s equation from Euler?s equation, and explain flow rate measurement using venturimeter, orifice meter, pitot tube, and V and rectangular notches. CO4: Determine dimensionless groups for fluid flow analysis through Buckingham pi theorem and Rayleigh?s method, and explain direct measurements, analogue methods, flow visualization and components of measuring systems by comprehending concepts of experimental fluid mechanics. CO5: Calculate pressure drop in pipe flow, and drag and lift coefficients in external flow using experimental relations, and determine Mach number by comprehending basic concepts of compressible flow. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Fluid Mechanics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Pascal’s law, Absolute, gauge, atmospheric and vacuum pressures. Pressure measurement by simple, differential manometers and mechanical gauges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Statics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Statics: Buoyancy, center of buoyancy, meta center and meta centric heightits application in shipping, stability of floating bodies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Dynamics:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Euler’s equation, Integration of Euler’s equation to obtain Bernoulli’s equation, Bernoulli’s theorem, Application of Bernoulli’s theorem such as venturi meter, orifice meter, rectangular and triangular notch, pitot tube, orifices etc., related numericals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Kinematics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Kinematics: Types of Flow-steady , unsteady, uniform, non-uniform, laminar, turbulent, one, two and three dimensional, compressible, incompressible, rotational, irrotational, stream lines, path lines, streak lines, velocity components, convective and local acceleration, velocity potential, stream function, continuity equation in Cartesian co-ordinates. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major and Minor losses in Pipes
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major and Minor losses in Pipes: Energy consideration in pipe flow, Loss of Pressure Head due to Fluid Friction, Chezy’s equation, Darcy Weishach formula, major and minor losses in pipes, Moody equation/ diagram. Pipes in series, parallel, equivalent pipe, Related Numericals and simple pipe design problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dimensional Analysis
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Dimensional Analysis: Need for dimensional analysis, Dimensions and units, Dimensional Homogeneity and dimensionless ratios, methods of dimensional analysis, Rayleigh’s method, Buckingham Pi theorem, Numerical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Flow Over Bodies
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Flow Over Bodies: Basic concept of Lift and Drag, Types of drag, Co-efficient of drag and lift, streamline body and bluff body, flow around circular bodies and airfoils, Lift and drag on airfoil, Numerical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CFD
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compressible Flows
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Bansal. R.K, “Fluid Mechanics and Hydraulics Machines”, 9th edition, Laxmi publications {P} Ltd., New Delhi,2017 T2. Yunus A Cengel & John M. Cimbala, Fluid Mechanics, Tata McGraw Hill Edition New Delhi, 2013
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. White. F.M, “Fluid Mechanics”, Tata McGraw-Hill, 8th Edition, New Delhi, 2016 R2. Streeter V.L., Benjamin Wylie, “Fluid Mechanics”, Mc Graw Hill Book Co., New Delhi,1999 R3. Robert W. Fax, Philip J. Pritchard, Alan T. McDonald, “Introduction to Fluid Mechanics”, Wiley India Edition {Wiley Student Edition 8th 2014} R4. Modi P.N, & Seth S.M, “Hydraulics and Fluid Mechanics”, Standard Book House,New Delhi, 14th edition, 2002 R5. Shiv Kumar, “Fluid Mechanics & Fluid Machines: Basic Concepts & Principles”, Ane Books Pvt. Ltd., New Delhi, 2010
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BS351 - ENGINEERING BIOLOGY LABORATORY (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Understanding and application of MATLAB and TINKERCAD for biological analysis which would results in better healthcare and any engineer, irrespective of the parent discipline (mechanical, electrical, civil, computer, electronics, etc.,) can use the disciplinary skills toward designing/improving biological systems. This course is designed to convey the essentials of human physiology.
The course will introduce to the students the various fundamental concepts in MATLAB and TINKERCAD for numerical analysis and circuit design using arduino.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Perform basic mathematical operation and analysis on biological parameters as BMI, ECG using MATLAB.L4 CO2: Perform basic image processing on RGB images pertaining to medical data using MATLAB.L4 CO3: Perform analysis on biological parameters using TinkerCad and design mini projects applicable for healthcare and biosensing.L4 |
Unit-1 |
Teaching Hours:30 |
LIST OF EXPERIMENTS
|
|
1. To familiarize with Matlab Online and getting used to basic functionalities used in Matlab (arrays, matrices, tables, functions) 2. To calculate the Body Mass Index (BMI) of a person and determine under what category the person falls under – underweight, normal, overweight 3. To determine the R peaks in given ECG and to find HRV using Matlab. 4. To determine the R peaks in given ECG and to find HRV using Matlab. 5. To determine the R peaks in given ECG and to find HRV using Matlab. 6. Introduction to Tinkercad and using the various tools available for running a simple program of lighting a LED bulb using Arduino (digital). 7. To design a driver motor in Tinkercad using Arduino and driver motor 8. To design a temperature sensor in Tinkercad using Arduino and TMP36 9. To design and simulate gas sensors using potentiometers, Arduino and servo motors 10. To design and simulate measuring pulse sensors using photodiodes, IR LED and Arduino 11. Preparation of biopolymers (polylactic acid) at home using home-based ingredients. | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern As per university norms | |
EVS321 - ENVIRONMENTAL SCIENCE (2021 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:0 |
Credits:0 |
Course Objectives/Course Description |
|
To understand the scope and importance of environmental science towards developing a conscious community for environmental issues, both at global and local scale. |
|
Course Outcome |
|
CO1. Explain the components and concept of various ecosystems in the environment (L2, PO7) CO2. Explain the necessity of natural resources management (L2, PO1, PO2 and PO7) CO3.Relate the causes and impacts of environmental pollution (L4, PO1, PO2, and PO3, PO4) CO4.Relate climate change/global atmospheric changes and adaptation (L4,PO7) CO5. Appraise the role of technology and institutional mechanisms for environmental protection (L5, PO8) |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems. | |
Unit-2 |
Teaching Hours:6 |
Natural Resources
|
|
Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries | |
Unit-3 |
Teaching Hours:6 |
Environmental Pollution
|
|
Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management | |
Unit-4 |
Teaching Hours:6 |
Climate change/Global Atmospheric Change
|
|
Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities | |
Unit-5 |
Teaching Hours:6 |
Environmental Protection
|
|
Technology, Modern Tools – GIS and Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship | |
Text Books And Reference Books: T1Kaushik A and Kaushik. C. P, “Perspectives in Environmental Studies”New Age International Publishers, New Delhi, 2018 [Unit: I, II, III and IV] T2Asthana and Asthana, “A text Book of Environmental Studies”, S. Chand, New Delhi, Revised Edition, 2010 [Unit: I, II, III and V] T3Nandini. N, Sunitha. N and Tandon. S, “environmental Studies” , Sapana, Bangalore, June 2019 [Unit: I, II, III and IV] T4R Rajagopalan, “Environmental Studies – From Crisis to Cure”, Oxford, Seventh University Press, 2017, [Unit: I, II, III and IV]
| |
Essential Reading / Recommended Reading R1.Miller. G. T and Spoolman. S. E, “Environmental Science”, CENAGE Learning, New Delhi, 2015 R2.Masters, G andEla, W.P (2015), Introduction to environmental Engineering and Science, 3rd Edition. Pearson., New Delhi, 2013. R3.Raman Sivakumar, “Principals of Environmental Science and Engineering”, Second Edition, Cengage learning Singapore, 2005. R4.P. Meenakshi, “Elements of Environmental Science and Engineering”, Prentice Hall of India Private Limited, New Delhi, 2006. R5.S.M. Prakash, “Environmental Studies”, Elite Publishers Mangalore, 2007 R6.ErachBharucha, “Textbook of Environmental Studies”, for UGC, University press, 2005. R7. Dr. Pratiba Sing, Dr. AnoopSingh and Dr. PiyushMalaviya, “Textbook of Environmental and Ecology”, Acme Learning Pvt. Ltd. New Delhi. | |
Evaluation Pattern No Evaluation | |
HS321 - PROFESSIONAL ETHICS (2021 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:3 |
Credits:2 |
Course Objectives/Course Description |
|
This paper deals with the various organizational behaviors like learning, perception, motivation and method of managing stress and conflicts and the basic principles of communication. |
|
Course Outcome |
|
CO1: Understand the importance of Values and Ethics in their personal lives and professional careers CO2: Learn the rights and responsibilities as an employee, team member and a global citizen CO3: Estimate the impact of self and organization?s actions on the stakeholders and society CO4: Develop an ethical behaviour under all situations CO5: Appreciate the significance of Intellectual Property as a very important driver of growth and development in today?s world and be able to statutorily acquire and use different types of intellectual property in their professional life |
Unit-1 |
Teaching Hours:6 |
|||||||||||||||
Introduction to Professional Ethics
|
||||||||||||||||
Definition, Nature, Scope- Moral Dilemmas- moral Autonomy-Kohlberg’s theory- Gilligan’s theory, Profession Persuasive, Definitions, Multiple motives, Models of professional goals. Moral Reasoning and Ethical theories – Professional Ideals and Virtues- Theories of Right Action, Self- interest, Customs and Regions- Use of ethical Theories | ||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||
Engineering as Social Experimentation and Responsibility
|
||||||||||||||||
For Safety Engineering as experimentation- Engineers as responsible experimenters, the challenger case, Codes of Ethics, A balanced outlook on law. Concept of safety and risk, assessment of safety and risk- risk benefit analysis and reducing the risk- three- mile island, Chernobyl and safe exists. | ||||||||||||||||
Unit-3 |
Teaching Hours:6 |
|||||||||||||||
Global Issues and Introduction To Intellectual Property
|
||||||||||||||||
Multinational corporations- Environmental ethics- Computer ethics and Weapons developments. Meaning and Types of Intellectual Property, Intellectual Property. Law Basics, Agencies responsible for intellectual property registration, International Organizations, Agencies and Treaties, Importance of Intellectual Property Rights. | ||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||
Foundations of Trademarks
|
||||||||||||||||
Meaning of Trademarks, Purpose and Functions of Trademarks, types of Marks, Acquisition of Trademark rights, Common Law rights, Categories of Marks, Trade names and Business Name, Protectable Matter, Exclusions from Trademark Protection.work process. | ||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||
Foundations of Copyrights Laws and Patent Laws
|
||||||||||||||||
Meaning of Copyrights, Common Law rights and Rights under the 1976 copyright Act, Recent developments of the Copyright Act, The United States Copyright Office. Meaning of Patent Law, Rights under Federal Law, United States patent and Trademark Office, Patentability, Design Patents, Plants patents, Double Patenting. | ||||||||||||||||
Text Books And Reference Books: T1. Jayashree Suresh &B.S.Raghavan “Human values and Professional Ethics”, S. Chand, 2009. T2. Govindarajan, Natarajan and Senthilkumar “Engineering Ethics”, PHI:009.
| ||||||||||||||||
Essential Reading / Recommended Reading R1. Nagarajan “A Text Book on Professional ethics and Human values”, New Age International, 2009. R2. Charles &Fleddermann “Engineering Ethics”, Pearson, 2009. R3. Rachana Singh Puri and Arvind Viswanathan, I.K.”Practical Approach to Intellectual Property rights”, International Publishing House, New Delhi. 2010. R4. A.B.Rao “Business Ethics and Professional Values”, Excel, 2009.
| ||||||||||||||||
Evaluation Pattern
| ||||||||||||||||
MA331 - MATHEMATICS - III (2021 Batch) | ||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||
Course Objectives/Course Description |
||||||||||||||||
To enable the students to find the Fourier series and harmonic analysis of a periodic function, solve the boundary value problems using Fourier series, ordinary differential equations by series solution method and describe functionals and solve variational problems.
|
||||||||||||||||
Course Outcome |
||||||||||||||||
CO1: Develop the trigonometric series as Fourier expansion. {L4 }{PO1, PO2, PO3, PO4} CO2: Classify the nature of partial differential equations and hence solve it by different methods. {L3} {PO1, PO2, PO3} CO3: Solve boundary value problems using Fourier series {L3} {PO1, PO2, PO3} CO4: Solve ordinary differential equation using series solution method {L3} {PO1, PO2, PO3} CO5: Apply Euler?s equation to solve the optimal values of the functional. {L3} {PO1, PO2, PO3} |
Unit-1 |
Teaching Hours:8 |
||||||||||
FOURIER SERIES
|
|||||||||||
Periodic functions, Dirichlet’s conditions, General Fourier series, Odd and even functions, Half range sine and cosine series, Harmonic Analysis. | |||||||||||
Unit-2 |
Teaching Hours:10 |
||||||||||
PARTIAL DIFFERENTIAL EQUATIONS
|
|||||||||||
Formation of PDE, Solution of homogeneous PDE involving derivative with respect to one independent variable only (Both types with given set of conditions), solution of non- homogeneous PDE by direct integration, Solution of Lagrange’s linear PDE of the type P p +Q q= R | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
BOUNDARY VALUE PROBLEMS
|
|||||||||||
Various possible solutions of one-dimensional wave and heat equations, two-dimensional Laplace’s equation by the method of separation of variables. Solution of all these equations with specified boundary conditions. | |||||||||||
Unit-4 |
Teaching Hours:8 |
||||||||||
SERIES SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
|
|||||||||||
Power Series solutions of differential equations, ordinary point, singular point, Frobenius method | |||||||||||
Unit-5 |
Teaching Hours:10 |
||||||||||
CALCULUS OF VARIATIONS
|
|||||||||||
Variation of a function, Variational problems, Euler’s equation and its solution, Standard variation problems including geodesics, minimal surface of revolution, hanging chain and Brachistochrone problems. Functional; functionals involving higher order derivatives. | |||||||||||
Text Books And Reference Books: T1. Dr. B. Grewal, “Higher Engineering Mathematics”, 43rd Edition, Khanna Publishers, July 2014. T2. H. K. Das & Rajnish Verma, “Higher Engineering Mathematics”, 20th Edition, S. Chand & Company Ltd., 2012 | |||||||||||
Essential Reading / Recommended Reading R1. Erwin Kreyszig, “Advanced Engineering Mathematics”, 10th Edition, John Wiley & Sons,Inc. 2011. R2. B.V. Ramana, 6th Reprint, “Higher Engineering Mathematics”, Tata-Macgraw Hill, 2008 R3. George F. Simmons and Steven G. Krantz, “Differential Equation, Theory, Technique and Practice”, Tata McGraw – Hill, 2006. R4. M. D. Raisinghania, “Ordinary and Partial Differential Equation”, Chand (S.) & Co. Ltd., India, March 17, 2005 | |||||||||||
Evaluation Pattern
| |||||||||||
ME333P - STRENGTH OF MATERIALS (2021 Batch) | |||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||
Max Marks:100 |
Credits:4 |
||||||||||
Course Objectives/Course Description |
|||||||||||
To study the behaviour of the material under different loading conditions, and study of various stress, strain and deformation on a material without undergoing failure or plastic deformation. |
|||||||||||
Course Outcome |
|||||||||||
CO1: Understand the concepts of stress and strain at a point as well as the stress-strain relationships for homogenous, isotropic materials. (L2) CO2: Design simple bars, beams, and circular shafts for allowable stresses and loads. (L2) CO3: Calculate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings. (L3) CO4: Calculate the stresses and strains associated with thin-wall spherical and cylindrical pressure vessels. (L3) CO5: Determine and illustrate principal stresses, maximum shearing stress, and the stresses acting on a structural member. (L3) CO6: To give an ability to apply the knowledge of the strength of materials on engineering applications and design problems. (L4) |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Simple Stresses and Strains
|
||||||||||||||||||||||||||||||||||||
Deformation in Solids, Hooke’s law, Stress Strain curve for ductile and brittle materials,Principle of super position, Shear stresses, Temperature Stress, Elastic constants and their relations - Volumetric, linear and shear strains. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Compound Stresses and Strains
|
||||||||||||||||||||||||||||||||||||
Two-dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr’s circle of stress. Activity: Determination of Plane stress 2D element using Matlab. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Bending moment and Shear Force Diagrams
|
||||||||||||||||||||||||||||||||||||
Bending moment (BM) and shear force (SF) diagrams for cantilever, simply supported and over hanging beams for point load (PL), uniformly distributed load (UDL), Uniformly varying load (UVL) and Couple. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Deflection of Beams
|
||||||||||||||||||||||||||||||||||||
Relationship between moment, slope and deflection, Double integration method, Macaulay’s method. Use of these methods to calculate slope and deflection for cantilever and simply supported beams subjected to point load, UDL, UVL and Couple. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Theory of bending stresses
|
||||||||||||||||||||||||||||||||||||
Relationship between moment, slope and deflection, Double integration method, Macaulay’s method. Use of these methods to calculate slope and deflection for cantilever and simply supported beams subjected to point load, UDL, UVL and Couple. Activity: Determination of Neutral axis for any regular or composite beam section using Matlab or Excel. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Simple Torsional Theory
|
||||||||||||||||||||||||||||||||||||
Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity, Combined torsion. Analysis of close-coiled-helical springs. Activity: Determination of Torsion in shaft using Matlab. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Thick and Thin Cylinders
|
||||||||||||||||||||||||||||||||||||
Axial and hoop stresses in cylinders subjected to internal pressure, deformation of thick and thin cylinders, deformation in spherical shells subjected to internal pressure. | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Egor P. Popov, Engineering Mechanics of Solids, Prentice Hall of India, New Delhi, 2001. T2. R. Subramanian, Strength of Materials, Oxford University Press, 2007. T3. Ferdinand P. Been, Russel Johnson Jr and John J. Dewole, Mechanics of Materials, Tata Mc McGraw-Hill Publishing Co. Ltd., New Delhi 2005. T4. R.C. Hibbeler, "Mechanics of materials", 9th Edition, Prentice-Hall. Pearson Edu., 2014. T5. James. M. Gere; Stephe Timoshenko, "Mechanics of materials",2nd Edition CBS Publishers, 2016. T6. Ferdinand P Beer; E. Russel Johnson; John T Dewolf; David F Mazurek; Sanjeev. Sanghi, "Mechanics of materials", Tata mc-grawhill- 2013. | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. S.S. Rattan, "Strength of Materials", 3rd Edition, Tata McGraw Hill, 2011. R2. S.S. Bhavikatti, “Strength of Materials", 4th Edition, Vikas publications House Pvt. Ltd., 2013. R3. K.V. Rao, G.C. Raju, “Mechanics of Materials", First Edition, 2007. R4. Egor. P. Popov, "Engineering Mechanics of Solids", Pearson Edu. India, 2008. R5. W.A. Nash, Schaum's Outlines Strength of Materials, Tata Mcgraw-Hill Publishing Company 2010. R6 R.K. Rajput “Strength of Materials”, S.Chand & co Ltd. New Delhi, 2015. R7 R.KBansal, “Strength of Materials”, Lakshmi Publication {P} Ltd, New Delhi, 2009. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
AU431 - AUTOMOTIVE POWER TRAIN (2021 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
The course aims to impart basic skills and understanding of automobile transmission systems basic components their working principle, classification and performance characteristics.
|
||||||||||||||||||||||||||||||||||||
Course Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Illustrate the working principle of Engine components and Transmission system. CO2: Apply the basic knowledge on recent development in the area of transmission systems. CO3: Differentiate between semi Automatic, fully automatic and manual transmission system. CO4: Inspect the defects related to faulty components of Transmission system. CO5: Examine the efficiency and emission norms by controlling of transmission system parameters.
|
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Clutch
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Clutch: Necessity of clutch in an automobile, different types of clutches, friction clutches namely Single plate clutch, multi plate clutch, cone clutch, centrifugal clutch, electromagnetic clutch, hydraulic clutches, Duel clutch, Clutch - adjustment, Clutch troubles and their causes, requirements of a clutch , Clutch materials, clutch lining, Vacuum operated clutch, Numerical problem | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Gear Box
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Gear Box: Objective of the Gear Box - Setting top, bottom and intermediate gear ratios, Problems involving these derivations - Performance characteristics at different speeds - Construction and operations of Sliding-mesh gear box - Constant-mesh gear box - Synchro-mesh gear box - Planetary gear box - Problems on above aspects | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Coupling and Torque Converter
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Coupling and Torque Converter: Multi-stage hydro-kinetic torque converter - Poly-phase hydro-kinetic torque converter - Construction, working and performance, Fluid coupling characteristics, constructional details of various types, percentage slip. Principal of torque conversion, single, multi stage and poly phase torque converters, performance characteristics, constructional and operational details of typical hydraulic transmission drives.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Drive Line and Differential
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Drive Line and Differential: Chain drive, propeller shaft drive, torque reaction and drive thrust, Hotchkiss drive, Torque tube drive, universal joints, front wheel drive, different types of final drive, double reduction and twin speed final drives, differential, construction details , non-slip differential, differential locks, rear axle assembly, types, multi axle vehicles, power train for hybrid vehicles | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Automatic Transmission
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Automatic Transmission: Automatic transmission: relative merits and demerits when compared to conventional transmission, Principle of working of epicyclic gear train - Wilson gear box- construction, working, continuously variable transmission, general arrangement & description of electric transmission, Hydrostatic drive and Hydrodynamic drive | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. “Automotive Transmissions: Fundamentals, Selection, Design and Application”, 2nd Edition, Springer, 2011. | |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Heldt P. M, “Torque converters”, Chilton Book Co., 1992. 2. Newton Steeds & Garrot, “Motor Vehicles”, SAE International and Butterworth Heinemann, 2001. 3. CDX Automotive, “Fundamentals of Automotive Technology: Principles and Practice”, Jones & Bartlett Publishers, 2013. 4. Judge A.W, “Modern Transmission Systems”, Chapman and Hall Ltd., 1990. 5. SAE Transactions 900550 & 930910. 6. Crouse W.H, Anglin D.L, “Automotive Transmission and Power Trains construction”, McGraw Hill, 1976.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
AU432P - AUTOMOTIVE MATERIALS AND MANUFACTURING TECHNOLOGY (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
The objective of the course is to provide the basic knowledge needed to explore the application of materials science and engineering in automobile field. 1.To develop the knowledge of the properties of materials and its alloys 2.To introduce the modern materials and alloys. 3.To develop knowledge in recent trends in manufacturing techniques of automobile components. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Describe the types of Ferrous & Non-Ferrous alloys. CO2: Discuss the Mechanical surface treatment and coatings done on materials. CO3: Describe the need for modern materials and its alloys. CO4: Discuss the material used to manufacture Engine and describe the manufacturing process. CO5: Discuss and explain the trends in manufacturing Automobile components. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ferrous & Non-Ferrous Automotive Materials
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Classification of Engineering Materials, Properties of Materials, History, Factors Contributing Sustainable Mobility, Importance of light weight Material, Alloys, Phase Diagram, Iron-Carbon Equilibrium diagrams, Micro Structures & their properties. Light Weight material: Aluminum, Magnesium Alloys, potential in Automotive Light Weighting (wrt Ashby Diagram), Magnesium and Mg Alloys Designation, Manufacturing Methods, Aluminum & its wide application in Automotive, Wrought and Cast Al Alloy Designation. Steels, Classification of steels, Carbon steels: Low, Medium & High; Alloy Steels: Low and High Alloy Steels, High Strength low Alloy(HSLA) Steels, Alloying Elements in Steel, Effects of Alloying Elements on steels. Cast Iron: Basic Metallurgy of Cast Iron, Classification of Cast Iron, Gray CI, Ductile Iron, Malleable Iron, Compacted Graphite Irons.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface Engineering
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction, Groups of Methods, Functions and Purpose of a Product, Mechanical Surface Treatment: Surface Cleaning, Finishing Processes, Mass Finishing & Short Pining. Heat Treatment: Grain Size, Micro-Structure, Hardenability, Fe-C Phase Diagram, Types of heat treatment, Normalizing, annealing, Spherodising, Quenching and Tempering, Carbonizing, Nitriding, Carbo- Niriding, Nitro- Carbonizing, Laser Surface hardening. Coating: Organic & Inorganic Coating, Powder Coating, Hot Dip Coating, Electroplating, Electroless coating, Metallizing of Plastics and Ceramics, Physical vapor Deposition, Chemical vapor Deposition.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Advances in Automotive Materials
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Passenger Cars Body Materials: Evolutions in Advance Steels, Current and Future Trends, DP Steel, CP Steel, MART Steel, FB Steel, HF Steel, TRIP Steel, TWIP Steel, AHSS: Nano Steel, Usage and Automotive Applications. Forging Grades Steel, High Temperature Super Alloy, SMART Materials | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Composites in Automotive Environment
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Need for composites, Properties of engineering composites and their limitations, Significance of Polymer, Metal and Ceramic matrix composite systems, Property correlation with reinforcement shape and distribution, Processing and application of different composites for automotive components.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent Trends in manufacturing Auto components
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Special processing techniques-Hydroforming-stretch forming-Recent developments in auto body panel forming-squeeze casting of pistons, Aluminium composite brake rotors-sinter diffusion bonded idler sprocket-Gas injection moulding of window channel-Cast con process for auto parts-computer modeling and simulation-material characterestics and failure analysis. Types of batteries, Battery chemistry of Lead acid, Nickel Cadmium Batteries, Lithium Batteries, Lithium Polymer Battery, The Lithium Ion Battery, Metal–Air Batteries (Aluminium–Air Battery). Battery terminologies, Battery pack materials | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1.Callister W.D. (2006) “Material Science and Engineering- An introduction”, Wiley –Eastern 2.Flinn R. A. and Trojan P. K., (1999)”Engineering Materials and their Applications”, Jaico. 3.Arthur C.Reardon (2011) “Metallurgy for the Non- Metallurgist”, ASM International Publication. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. KENNETH BUDINSKI – (1988) “Surface Engineering for wear resistance", Prentice Hall. 2. Avner S.H., (2006) “Introduction to physical metallurgy” –Tata McGraw Hill. 3. Haslehurst.S.E., " Manufacturing Technology ", ELBS, London, 1990. 4. Rusinoff, " Forging and Forming of metals ", D.B. Taraporevala Son & Co. Pvt Ltd., Mumbai,1995. . Sabroff.A.M. & Others, " Forging Materials & Processes ", Reinhold Book Corporation, New York, 5. Upton, " Pressure Die Casting ", pergamon Press, 1985. High Velocity " Forming of Metals ", ASTME, prentice Hall of India (P) Ltd., New Delhi, 1990. 6. ASM Handbook Volume 4 & 4A: Heat Treatment
7. ASM Handbook Volume 5: Surface Engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU433P - AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
•To make the students understand the working principle of transducers and sensors. •To understand various types of lighting system and charging system. •To understand various types of sensors used in engine and application of each sensor. •To have a broad knowledge about electrical and electronic components in the vehicle.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain the construction of battery used in automotive vehicles. CO2: Describe the construction and working of D.C. generator, alternator, cranking motor and ignition systems along with trouble shooting. CO3: Explain the various aspects of Charging System and Lighting. CO4: Discuss the current trend automotive electronic engine management, safety and security systems. CO5: Describe the use transducers and sensors in electronic circuits. CO6: Conduct experiments on the topics like Battery, starter motors, generator, charging system, automotive electronic systems, Sensors and transducers. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Batteries and Accessories
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Principle and construction of lead acid battery, characteristics of battery, rating capacity and efficiency of batteries, various tests on batteries, maintenance and charging. Standard Battery rating for various vehicles, other battery types and overview of battery management system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Starting System
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Condition at starting, behaviour of starter during starting, series motor and its characteristics, principle and construction of starter motor, working of different starter drive units, care and maintenances of starter motor, starter switches.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Charging System and Lighting
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cut-out. Voltage and current regulators, compensated voltage regulator, alternators principle and constructional aspects and bridge rectifiers, new developments. Lighting system: insulated and earth return system, details of head light and side light, LED lighting system, head light dazzling and preventive methods – Horn, and wiper system, advances in lighting system (adaptive front lighting system – AFLS).
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fundamentals of Automotive Electronics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current trends in automotive electronic engine management system, electromagnetic interference /electromagnetic compatibility (EMI/EMC), electronic dashboard instruments, on board diagnostic system (OBD), security and warning system.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sensors and Actuators
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.Case study of any one of the automotive sensor-based application.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Allan Bonnick, “Automotive Computer Controlled Systems”, ISBN1138177172 2016. T2. Tom Weather Jr and Cland C.Hunter, “Automotive Computers and Control System”, Prentice Hall Inc., New Jersey. T3. Young A. P & Griffiths L, “Automobile Electrical and Electronic Equipments”, English Languages Book Society & New Press, 1990.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Santini Al, “Automotive Electricity and Electronics”, Cengage Learning, 2012. R2. Tom Denton, “Automotive Electrical and Electronic System”, SAE International, 2004. R3. William B. Ribbens, “Understanding Automotive Electronics”, 6th Edition, Newnes, 2003. R4. BOSCH, “Automotive Handbook”, 8th Edition, BENTLEY ROBERT Incorporated, 2011. R5. Norm Chapman, “Principles of Electricity and electronics for the Automotive Technician”, Delmar Cengage Learning,2nd edition 2009. R6. Judge A.W, “Modern Electrical Equipment of Automobiles”, Chapman & Hall, London, 1992.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU434P - AUTOMOTIVE ENGINES (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
●To make students familiar with engine components. ●To understand about carburetion, and types of petrol injection systems. ●To introduce combustion inside the engine. ●To introduce students to lubrication and cooling systems, supercharging turbocharging and scavenging.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Discuss the construction, operation, and combustion process in IC engines. CO2: Describe the mechanism of emission formation in SI and CI engines and control methods. CO3: Identify the importance of combustion chamber design to achieve improved performance of the engine. CO4: Demonstrate the requirements of measuring engine performance parameters and methods of improving engine performance. CO5: Summarize the availability of alternative fuels, effect of fuel properties on the combustion process, and determine the air-fuel ratio for combustion of fuels. CO6: Experiment the methods to arrive the properties of fuel samples, performance parameters, and heat balance sheet of IC engines using dynamometers and calorimeter. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Engine Construction and Operation
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Four stroke SI and CI engines - Working principle - function, materials, constructional details of engine components - Valve timing diagram - Firing order and its significance – relative merits and demerits of SI and CI engines, two stroke engine construction and operation. Comparison of four-stroke and two-stroke engine operation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion and Fuels
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion fundamentals, Conversion of gravimetric to volumetric analysis -Determination of theoretical minimum quantity of air for complete combustion -Determination of air fuel ratio for a given fuel. Properties and rating of fuels (petrol and diesel), chemical energy of fuels, reaction equations, combustion temperature, combustion chart. Combustion in premixed and diffusion flames - Combustion process in IC engines. Alternate fuels: CNG, LPG, Alcohols, Hydrogen and Vegetable oil as a fuel: -Modification required to use in engines. -Performance and emission characteristics.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion in SI Engines
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stages of combustion in SI engine- Flame propagation - Flame velocity and area of flame front - Rate of pressure rise - Cycle to cycle variation–Abnormal combustion - Theories of detonation - Effect of engine operating variables on combustion. Combustion chambers - types, factors controlling combustion chamber design, Emissions from SI engine, SI emission reduction techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion in CI Engines
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Importance of air motion - Swirl, squish and turbulence-Swirl ratio. Fuel air mixing - Stages of combustion - Delay period - Factors affecting delay period, Knock in CI engines - methods of controlling diesel knock. CI engine combustion chambers - Combustion chamber design objectives - open and divided. Induction swirl, turbulent combustion chambers. - Air cell chamber - M Combustion chamber. Emissions from CI engine, CI emission reduction techniques | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Engine Performance
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Measurement and calculation techniques of performance parameters - BP, FP, IP, Torque-specific fuel consumption, Specific energy consumption, volumetric efficiency, thermal efficiency, mechanical efficiency, heat balance, Testing of engines–different methods, Emission measurement techniques, Numerical problems. Other Technologies: Basic Purpose, Construction, Working and Types of: a. Turbocharger, b. Supercharger.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1.Ganesan V, “Internal combustion engines”, 4th edition, Tata McGraw Hill Education, 2012 2.Rajput R. K, “A textbook of Internal Combustion Engines”, 3rd edition, Laxmi Publications (P) Ltd, 2016.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU435 - KINEMATICS AND THEORY OF MACHINES (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.To understand the kinematics and rigid- body dynamics of kinematically driven machine components 2.To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link 3.To be able to design some linkage mechanisms and cam systems to generate specified output motion 4.To understand the kinematics of gear trains |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Summarize the fundamentals of kinematics and Planar mechanisms. CO2: Analyse velocity and acceleration parameters in various four bar mechanisms using instantaneous centre method and relative velocity method. CO3: Develop the displacement diagram for a required output and design cam profiles for inline and offset followers. CO4: Explain the fundamentals of gear profiles and extrapolate various parameters of Spur gear teeth. CO5: Design gear trains for power transmission. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashoff’s law, Kinematic inversions of four bar chain and slider crank chains-Limit positions- Mechanical advantage- Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Displacement, velocity and acceleration
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Coriolis component of acceleration- introduction to linkage synthesis-three position graphical synthesis for motion and path generation | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Cams and followers
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Classification of cams and followers- Terminology and definitions- Displacement diagrams-Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Gear trains
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Surface contacts
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication-friction clutches- belt and rope drives- friction in brakes | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988. T2. Ratan.S.S, “Theory of Machines”, 4th Edition, Tata McGraw Hill Publishing company Ltd. 2014.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005. R2. CleghornW.L. , Mechanisms of Machines, Oxford University Press, 2005. R3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
AU436 - ENTREPRENEURSHIP DEVELOPMENT (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:2 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
●To develop entrepreneurship qualities and skills. ●To motivate young engineers to identify new business opportunities in the emerging area of science and technology and to understand the steps involved in setting up the business. ●To identify the source of finance, loans, capital structure, costing and application of it in new business venture. ●To understand the demand forecasting, product life cycle, sales strategies, distribution channel and adventuring in business. ●To understand the concept, magnitude, causes and measures for small scale business enterprises.
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain the concept, magnitude, causes and measures in the institutional support to the entrepreneurs. CO2: Illustrate the principles of marketing and growth strategies based on the assessment of the market. CO3: Identify the source of information and explain the steps involved in setting up a business. CO4: Make use of available source of finance, working capital, costing, taxation, pricing and procedures involved in business. CO5: Develop the entrepreneurship skills and identify the traits for entrepreneur.
|
Unit-1 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Entrepreneurship
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Entrepreneur – Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Motivation
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Major Motives Influencing an Entrepreneur – Achievement Motivation Training, self-Rating, Business Game, Thematic Apperception Test – Stress management, Entrepreneurship Development Programs – Need, Objectives
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Business
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Small Enterprises – Definition, Classification – Characteristics, Ownership Structures –Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Financing and Accounting
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, management of working Capital, Costing, Break Even Analysis, Network Analysis Techniques of PERT/CPM – Taxation – Income Tax, Excise Duty – Sales Tax.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||||||||||||||||||
Support to Entrepreneurs
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Sickness in small Business – Concept, Magnitude, causes and consequences, Corrective Measures – Government Policy for Small Scale Enterprises – Growth strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. B.B. Goel-Project Management-Deep and Deep Publications, New Delhi, 2004 2. Choudhury-S. Project Management –Tata Mc Grew –Hill- Publishing Company Limited, New Delhi,2005 3. Datta.A.K. Integrated Material Management 4. Gopalakrishnan.P. And Sthuram. M. Material management-An integral Approach 5. M.V.Varma –Material Management
| |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Hisrich R D and Peters M P, “Entrepreneurship” 5th Edition Tata McGraw-Hill, 2002. 2. Mathew J Manimala,” Enterprenuership theory at cross roads: paradigms and praxis” Dream tech 2nd edition 2006. 3. Rabindra N. Kanungo “Entrepreneurship and innovation”, Sage Publications, New Delhi, 1998. 4. EDII “Faulty and External Experts – A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development” Institute of India, Ahmadabad, 1986
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
CY421 - CYBER SECURITY (2021 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:0 |
Credits:0 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
This mandatory course is aimed at providing a comprehensive overview of the different facets of Cyber Security. In addition, the course will detail into specifics of Cyber Security with Cyber Laws both in Global and Indian Legal environments |
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
SI. NO DESCRIPTION REVISED BLOOM’S TAXONOMY (RBT)LEVEL CO -1 Describe the basic security fundamentals and cyber laws and legalities. L2 CO -2 Describe various cyber security vulnerabilities and threats such as virus, worms, online attacks, Dos and others. L2 CO -3 Explain the regulations and acts to prevent cyber-attacks such as Risk assessment and security policy management. L3 CO -4 Explain various vulnerability assessment and penetration testing tools. L3 CO -5 Explain various protection methods to safeguard from cyber-attacks using technologies like cryptography and Intrusion prevention systems. L3 |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Text Books And Reference Books: R1. Matt Bishop, “Introduction to Computer Security”, Pearson, 6th impression, ISBN: 978-81-7758-425-7. R2. Thomas R, Justin Peltier, John, “Information Security Fundamentals”, Auerbach Publications. R3. AtulKahate, “Cryptography and Network Security”, 2nd Edition, Tata McGrawHill.2003 R4. Nina Godbole, SunitBelapure, “Cyber Security”, Wiley India 1st Edition 2011 R5. Jennifer L. Bayuk and Jason Healey and Paul Rohmeyer and Marcus Sachs, “Cyber Security Policy Guidebook”, Wiley; 1 edition , 2012 R6. Dan Shoemaker and Wm. Arthur Conklin, “Cyber security: The Essential Body Of Knowledge”, Delmar Cengage Learning; 1 edition, 2011 R7. Stallings, “Cryptography & Network Security - Principles & Practice”, Prentice Hall, 6th Edition 2014 | |
Essential Reading / Recommended Reading NIL | |
Evaluation Pattern Only CIA will be conducted as per the University norms. No ESE Maximum Marks : 50 | |
AU531 - DESIGN OF AUTOMOTIVE COMPONENTS (2020 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
●The student shall gain appreciation and understanding of the design function in mechanical engineering, the steps involved in designing and the relation of design activity with manufacturing activity. ●Shall be able to choose proper materials to different machine elements depending on their physical and mechanical properties. Thus he shall be able to apply the knowledge of material science in real life usage. ●Student shall gain a thorough understanding of the different types of failure modes and criteria. He will be conversant with various failure theories and be able to judge which criterion is to be applied in which situation. ●Student shall gain design knowledge of the different types of elements used in the machine design process. Eg.,gears, crankshaft, flywheel etc. and will be able to design these elements for each application.
|
|
Course Outcome |
|
CO1: Discuss the various steps involved in designing, the relation of design activity with manufacturing activity and demonstrate the use standard practices in design CO2: Apply the knowledge of the curved beams and cylinders in determining the stresses developed for its real time usage CO3: Select the type of spring required for the application and calculate the dimensions of spring CO4: Design the different types of elements used in the machine design process. Eg. Riveted joint, Welded Joints etc. |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||
Introduction
|
||||||||||||||||
Introduction: Stress, strain, ductile and brittle materials. Static Strength: Static load, Stresses, Factor of Safety, Theories of Failure, Stress Concentration. Impact Strength: Load, Stress, Effect of Inertia, Resilience and Toughness..
| ||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||
Design of Cylinder, Piston and Curved Beams
|
||||||||||||||||
Choice of material for cylinder and piston, design of cylinder, piston, and piston pin, piston rings, piston failures, lubrication of piston assembly. Curved beams: Stresses in curved beams of standard cross sections used in crane hook, punching presses & clamps, closed rings and links
| ||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||
Design of Spur and Helical Gears
|
||||||||||||||||
Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, Design for strength, Dynamic load and wear load. Helical Gears: Definitions, formative number of teeth, Design based on strength, dynamic and wear loads.
| ||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||
Design of Bevel and Worm Gears
|
||||||||||||||||
Bevel Gears: Nomenclature, Straight teeth bevel gears, Cone angle, Virtual number of teeth, Face width, Static strength, Dynamic Strength, Wear Strength. Worm Gears: Nomenclature, Materials, Reversibility, Mechanical advantage, Strength design, Efficiency, Heat dissipation.
| ||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||
Rivets, Welded Joints and Springs
|
||||||||||||||||
Riveted and Welded Joints: Types, rivet materials, Failures of riveted joints, Joint Efficiency, Boiler Joints, Riveted Brackets. Types of welded joints, Strength of butt and fillet welds, eccentrically loaded welded joints Springs: Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads
| ||||||||||||||||
Text Books And Reference Books: 1.William Orthein, “Machine Component Design”, Jaico Publishing House, 1998 - 99. 2.Prabhu T. J, “Design of Transmission Systems”, Private Publication, 2000. 3.Shigley J, “Mechanical Engineering Design”, McGraw Hill 10 edition (1 February 2014) 4.Joseph Edward Shigley and Charles R.Mischke, “Mechanical Engineering Design”, McGraw-Hill International Edition, 1989.
| ||||||||||||||||
Essential Reading / Recommended Reading
| ||||||||||||||||
Evaluation Pattern
| ||||||||||||||||
AU532 - AUTOMOTIVE ENGINE SYSTEMS (2020 Batch) | ||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||
Course Objectives/Course Description |
||||||||||||||||
●To make students familiar with the intake and exhaust system components. ●To understand about carburetion, and types of petrol injection systems. ●To introduce students to diesel injection systems and the function of components like pumps, mechanical and pneumatic governors, fuel injectors and injection nozzles. ●To introduce students to lubrication and cooling systems, supercharging turbocharging and scavenging.
|
||||||||||||||||
Course Outcome |
||||||||||||||||
CO1: Explain the different types of intake and exhaust systems used in an automobile. CO2: Demonstrate the improvements in performance and efficiency of an SI engine with fuel injection systems over the conventional system. CO3: Describe the construction and working of different types of fuel injection systems used in diesel engines. CO4: Summarize the different methods of lubrication and cooling systems used in automobiles. CO5: Demonstrate the incorporation of supercharger and turbocharger in automotive to improve engine performance. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Intake and Exhaust Systems
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Intake system components - Discharge coefficient, Pressure drop - Air filter, intake manifold, Connecting Pipe - Exhaust system components – Exhaust manifold and exhaust pipe - Spark arresters - Exhaust mufflers, Types, operation
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Carburetion and Gasoline Injection
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Mixture requirements for steady state and transient operation, Mixture formation studies of volatile fuels, design of elementary carburettor Chokes - Effects of altitude on carburetion - Carburettor for 2-stroke and 4-stroke engines – carburettor systems for emission control. Petrol injection - Open loop and closed loop systems, mono point, multi-point and direct injection systems - Principles and Features, Bosch injection systems.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Diesel Injection
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Requirements - Air and solid injection - Function of components - Jerk and distributor type pumps- pump calibration .Pressure waves - Injection lag – Unit injector - Mechanical and pneumatic governors - Fuel injector - Types of injection nozzle - Nozzle tests - Spray characteristics - Injection timing - Factors influencing fuel spray atomization, penetration and dispersion of diesel | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Lubrication and Cooling
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Need for cooling system - Types of cooling system - Liquid cooled system: Thermosyphon system, Forced circulation system, pressure cooling system - properties of coolant, additives for coolants Need for lubrication system - Mist lubrication system, wet sump any dry sump lubrication - Properties of lubricants, consumption of oil. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Supercharging and Scavenging
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Objectives - Effects on engine performance - engine modification required -Thermodynamics of supercharging and Turbocharging – Turbo lag-Windage losses- Turbo charging methods - Engine exhaust manifold arrangements. Classification of scavenging systems -Mixture control through Reed valve induction - Charging Processes in two-stroke cycle engine - Terminologies -Shankey diagram - perfect displacement, perfect mixing. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Ganesan V, “Internal combustion engines”, 4th edition, Tata McGraw Hill Education, 2012 T2. Rajput R. K, “A textbook of Internal Combustion Engines”, 3rd edition, Laxmi Publications (P) Ltd, 2016.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Ramalingam K. K, “Internal Combustion Engine”, Scitech Publication (India) Pvt.Ltd. 2000. R2. Duffy Smith, “Auto Fuel Systems”, The Good Heart Willcox Company Inc., Publishers, 1987. R3. Edward F, Obert, “Internal Combustion Engines and Air Pollution”, Intext Education Publishers, 1980.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
AU533 - COMPUTER AIDED MACHINE DRAWING (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
●To visualize an object and convert it into a drawing. ●To gain knowledge of conventional representation of various machining and mechanical details as per IS. ●To become conversant with 2-D and 3-D drafting. ●Gaining the knowledge of CAD software and its features for effective representation of machine components and their assembly. ●Understand the format and Standards of Machine Drawing. ●Understand the technical information on machine drawings. ●Understanding and drawing of various views and machine components. ●Learning how to assemble and disassemble important parts used in major mechanical engineering applications.
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Elaborate the concept and importance of limits fits and tolerance in the manufacturing drawing. CO2: Summarize the thread terminologies, different types of fasteners, and keys used in machine parts. CO3: Elaborate the concepts of rivets, riveted joints and different types of couplings used in industry. CO4: Visualize and model surface parts of a machine. CO5: Ability to construct assembly drawing of various machines like crane hook, machine vice, tail stock of lathe, etc from the concepts learnt using the modeling software. |
Unit-1 |
Teaching Hours:10 |
|||||||||||||||
Introduction
|
||||||||||||||||
Introduction: Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap. Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on, axis inclinations, spheres and hollow solids). True shape of sections. Orthographic Views: Conversion of pictorial views into orthographic projections. of simple machine parts with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines.
| ||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||
Threads and Fasteners
|
||||||||||||||||
Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread. Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.
| ||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||
Keys, Joint and Rivets
|
||||||||||||||||
Keys & Joints : Parallel key, Taper key, Feather key, Gibhead key and Woodruff key Riveted Joints: Single and double riveted lap joints, butt joints with single/double cover straps (Chain and Zigzag, using snap head rivets). cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.
| ||||||||||||||||
Unit-4 |
Teaching Hours:8 |
|||||||||||||||
Couplings, GD&T
|
||||||||||||||||
Couplings: Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint) Introduction to GD&T: Introduction to dimensional analysis, GD&T and its tools, Datum’s and concepts, manufacturing GD&T and its application, application of GD&T and its Principles.
| ||||||||||||||||
Unit-5 |
Teaching Hours:11 |
|||||||||||||||
Assembly Drawings
|
||||||||||||||||
Assembly Drawings (Part drawings should be given) 1. Plummer block (Pedestal Bearing) 2. Rams Bottom Safety Valve 3. I.C. Engine connecting rod 4. Screw jack (Bottle type) 5. Tailstock of lathe 6. Machine vice 7. Tool head of the shaper
| ||||||||||||||||
Text Books And Reference Books: T1. 'A Primer on Computer Aided Machine Drawing-2007’, Published by VTU, Belgaum. T2. 'Machine Drawing', N.D.Bhat & V.M.Panchal.
| ||||||||||||||||
Essential Reading / Recommended Reading R1. 'A Text Book of Computer Aided Machine Drawing', S. Trymbaka Murthy, CBS R2. Publishers, New Delhi, 2007 R3. 'Machine Drawing’, K.R. Gopala Krishna, Subhash Publication. R4. 'Machine Drawing with Auto CAD', Goutam Pohit & Goutham Ghosh, 1st Indian print Pearson Education, 2005 R5. 'Auto CAD 2006, for engineers and designers', Sham Tickoo. Dream tech 2005 R6. 'Machine Drawing', N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by Tata Mc GrawHill,2006 R7. Fundamentals of Geometric Dimension & Tolerancing, by Alex Krulikowski
| ||||||||||||||||
Evaluation Pattern
| ||||||||||||||||
AU544E1 - AUTOMOTIVE AERODYNAMICS (2020 Batch) | ||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||
Course Objectives/Course Description |
||||||||||||||||
This course provides the basic knowledge about types of aerodynamic drag and the optimization techniques for minimum drag on automotive bodies. On completion of this course, the students are exposed to understand the concept of shape optimization and vehicle handling to minimize different types of aerodynamic drag. |
||||||||||||||||
Course Outcome |
||||||||||||||||
CO1: Discuss aerodynamics drag and its effect on a vehicle at different conditions of operation. CO2: Describe strategies to reduce aerodynamic drag. CO3: Analyse cabs for better aerodynamics. CO4: Analyse of vehicle body considering the forces and moments caused by the aerodynamics of a car. CO5: Discuss wind tunnel and its application for simulating aerodynamics in a real-time scenario. |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||
Introduction
|
||||||||||||||||
Scope – Historical development trends – Fundamentals of fluid mechanics – Flow phenomenon related to vehicles Types of aerodynamic drag. Forces and moments influencing drag. Effects of forces and moments. Various body optimization techniques for minimum drag. – External & Internal flow problems. Resistance to vehicle motion – Performance – Fuel consumption and performance – Potential of vehicle aerodynamics. | ||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||
Aerodynamic Drag of Cabs
|
||||||||||||||||
Car as a bluff body – Flow field around car – drag force – types of drag force – analysis of aerodynamic drag – drag coefficient of cars – strategies for aerodynamic development – low drag profiles.
| ||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||
Shape Optimization of Cabs
|
||||||||||||||||
Front and modification – front and rear wind shield angle – Boat tailing – Hatch back, fast back and square back – Dust flow patterns at the rear – Effect of gap configuration – effect of fasteners
| ||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||
Vehicle Handling
|
||||||||||||||||
The origin of force and moments on a vehicle – side wind problems – methods to calculate forces and moments – vehicle dynamics under side winds – the effects of forces and moments – Characteristics of forces and moments – Dirt accumulation on the vehicle – wind noise – drag reduction in commercial vehicles. | ||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||
Wind Tunnels For Automotive Aerodynamics
|
||||||||||||||||
Introduction – Principles of wind tunnel technology Flow visualization techniques. Testing with wind tunnel balance (scale models).– Limitation of simulation – Stress with scale models – full scale wind tunnels – measurement techniques – Equipment and transducers – road testing methods – Numerical methods | ||||||||||||||||
Text Books And Reference Books: 1.Hucho, W.H., Aerodynamics of Road vehicles, Butterworths Co. Ltd., 2013. 2.Pope,A., Wind Tunnel Testing, John Wiley & Sons, 2nd Edn., New York. 3.Aerodynamics by AJ Clancy
| ||||||||||||||||
Essential Reading / Recommended Reading 1. Automotive Aerodynamics: Update SP-706, SAE, 1987. 2. Vehicle Aerodynamics, SP-1145, SAE, 1996. 3. Aircraft Flight by AC Kermode.
| ||||||||||||||||
Evaluation Pattern
| ||||||||||||||||
AU551 - COMPUTATIONAL LABORATORY (2020 Batch) | ||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||
Max Marks:50 |
Credits:1 |
|||||||||||||||
Course Objectives/Course Description |
||||||||||||||||
FEA tools are used vastly by industries to validate the design and improvement of overall product experience. Hence, students will be trained for using FEM by using commercial tools. This will not only improve their knowledge but also will help them to secure better job with in Industry. |
||||||||||||||||
Course Outcome |
||||||||||||||||
CO1: To known the latest vastly used commercial tool. CO2: Virtual testing of product or mechanical components. CO3: Improvement of product/ part design by using FEM tools. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
List of Experiments
|
|||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Huebner, K. (2001). The finite element method for engineers. New York: John Wiley & Sons. T2. Ataei, H. and Mamaghani, M. (2017). Finite element analysis. 1st ed. Createspace Independent.
| |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Huebner, K. (2001). The finite element method for engineers. New York: John Wiley & Sons. R2. Ataei, H. and Mamaghani, M. (2017). Finite element analysis. 1st ed. Createspace Independent.
| |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
AU552 - AUTOMOTIVE SERVICING AND TEARDOWN LAB (2020 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||
Max Marks:50 |
Credits:1 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
●To make students familiar with engine components. ●To understand about different types of engines systems. ●To introduce students to lubrication and cooling systems.
|
|||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||
CO1: Explain the basic engine construction based on mechanism of working. CO2: Describe various engine components. CO3: Perform the Dismantle and assemble the engine. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||
List of Experiments
|
|||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. Ganesan V, “Internal combustion engines”, 4th edition, Tata McGraw Hill Education, 2012 2. Rajput R. K, “A textbook of Internal Combustion Engines”, 3rd edition, Laxmi Publications (P) Ltd, 2016.
| |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. John. B, Heywood, “Internal Combustion Engine Fundamentals”, McGraw Hill Education; 1 edition (17 August 2011) 2. Ramalingam K. K, “Internal Combustion Engines”, Second Edition, Scitech Publications. 3. Sharma S. P, Chandramohan, “Fuels and Combustion”, Tata McGraw Hill Publishing Co, 1987. 4. Mathur and Sharma, “A course on Internal combustion Engines”, DhanpatRai& Sons, 1998.
| |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CEOE561E01 - SOLID WASTE MANAGEMENT (2020 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
Objective of this paper is to provide managing solid wastes. It is designed as a source of information on solid waste management, including the Principles of Solid waste management, Processing and Treatment, Final disposal, Recycle and Reuse. |
|||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||
CO1: Define and explain important concepts in the field of solid waste management, such as waste hierarchy, waste prevention, recirculation, municipal solid waste etc (L2, L3) CO2: Suggest and describe suitable technical solutions for biological and thermal treatment. (L2, L3) CO3: Suggest, motivate and describe a way to tackle the problem from a system analysis approach. (L2, L3) CO4: Describe the construction and operation of a modern landfill according to the demands (L2) CO5: Discuss social aspects connected to handling and recirculation of solid waste from a local as well as global perspective. (L2) |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Sources
|
|||||||||||||||||||||||||||||||
Classification and characteristics – municipal, commercial and industrial. Methods of quantification | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Collection and Transportation
|
|||||||||||||||||||||||||||||||
Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
INCINERATION
|
|||||||||||||||||||||||||||||||
Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
TREATMENT/PROCESSING TECHNIQUES
|
|||||||||||||||||||||||||||||||
Components separation, volume reduction, size reduction, chemical reduction and biological processing problems. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
SANITARY LAND FILLING
|
|||||||||||||||||||||||||||||||
Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site pollution, leachate and gas collection and control methods, geo-synthetic fabricsin sanitary landfills. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
COMPOSTING
|
|||||||||||||||||||||||||||||||
Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
DISPOSAL METHODS
|
|||||||||||||||||||||||||||||||
Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling, merits and demerits, biomedical wastes and disposal | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
RECYCLE AND REUSE
|
|||||||||||||||||||||||||||||||
Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse. | |||||||||||||||||||||||||||||||
Text Books And Reference Books: Bhide and Sunderashan “Solid Waste Management in developing countries”, Tchobanoglous “Integrated Solid Waste Management”,Mc Graw Hill. | |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Peavy and Tchobanoglous“Environmental Engineering”, Garg S K “Environmental Engineering”, Vol II “Biomedical waste handling rules – 2000”. Pavoni J.L. “Hand book on Solid Waste Disposal” | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CEOE561E03 - DISASTER MANAGEMENT (2020 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
Course would help to understand the scope and relevance of Multi Disciplinary approach in Disaster Management in a dynamic world and to realize the responsibilities of individuals and institutions for effective disaster response and disaster risk reduction |
|||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||
CO1: Describe Hazards and Disasters CO2: Illustrate managerial aspects of Disaster Management CO3: Relate Disasters and Development CO4: Compare climate change impacts and develop scenarios
CO5: Compare climate change impacts and develop scenarios |
Unit-1 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Introduction to Hazard and Disasters
|
||||||||||||||||||||||||||||||||||||
Principles of Disaster Management, Hazards, Risks and Vulnerabilities; Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Disaster Management Cycle and Humanitarian Logistics
|
||||||||||||||||||||||||||||||||||||
Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||
Natural resources and Energy sources
|
||||||||||||||||||||||||||||||||||||
Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||
Global Environmental Issues
|
||||||||||||||||||||||||||||||||||||
Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFC‟s and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Development
|
||||||||||||||||||||||||||||||||||||
Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries. Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management. Technical Tolls for Disaster Management: Monitoring, Management program for disaster mitigation ; Geographical Information System(GIS) ; Role of Social Media in Disaster Management | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books:
T1. Paul, B.K, “Environmental Hazards and Disasters: Contexts, Perspectives and Management”, Wiley-Blackwell, 2011. (Unit 1 – Chapter 1; Unit 2 – Chapter 1, 3; Unit 3 – Chapter 4; Unit 4 – Chapter 5 & 6) T2. Keller, Edward, and Duane DeVecchio. “Natural hazards: earth's processes as hazards, disasters, and catastrophe”s. Pearson Higher Education AU, 2015. (Unit 5 – Chapter 6 & 7) | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Coppola, D, “Introduction to International Disaster Management “Elsevier, 2015.
R2. Fookes, Peter G., E. Mark Lee, and James S. Griffiths. "Engineering geomorphology: theory and practice." Whittles Publications, 2007.
R3. Tomasini, R. And Wassanhove, L.V (2009). Humanitarian Logistics. Pangrave Macmillan. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
HS522 - PROJECT MANAGEMENT AND FINANCE (2020 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
●To understand the concepts of project definition, life cycle, and systems approach ●To develop competency in project scooping, work definition, and work breakdown structure {WBS} ●Explore the entrepreneurial mind-set and culture that has been developing in companies of all sizes and industries. ●Examine the entrepreneurial process from the generation of creative ideas to exploring feasibility to creation of an enterprise for implementation of the ideas.
|
||||||||||||||||||||||||||||||||||||
Course Outcome |
||||||||||||||||||||||||||||||||||||
CO1: Apply the Principles of Management and its functions in Project Management CO2: Understand the basics of Planning the project and its finances CO3: Analyze the fundamentals of project and network diagram in engineering and management domain through PDM techniques. CO4: Application of various tools used in Monitoring and Controlling the project and its finances. CO5: Understand the steps involved in wrapping up a Project. |
Unit-1 |
Teaching Hours:6 |
|||||||||||||||
Introduction to Project Management
|
||||||||||||||||
Introduction to Organisations, Principles of Management - its functions, Skills, Organisation Structure, Financial Feasibility. Introduction to Project, Concept, Project Management, Project Life Cycle, Role of Project Manager - Functional Areas, Qualities and Responsibiities, Impact of Delays in Project Completions | ||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||
Project Planning
|
||||||||||||||||
Project management functions - Controlling, directing, project authority, responsibility, accountability, Scope of Planning, Market Analysis, Demand Forecasting, Product line analysis, Product Mix Analysis, New Product development, Plant location,plant capasity, Capital Budgeting,Time Value of Money,Cash flow importance, decision tree analysis | ||||||||||||||||
Unit-3 |
Teaching Hours:6 |
|||||||||||||||
Project Scheduling
|
||||||||||||||||
Introduction, Estimation of Time, Project Network Analysis - CPM and PERT model, Gantt Chart, Resource Loading,Resource Leveling, Resource Allocation. Estimating activity time and total program time, total PERT/CPM planning crash times, software‘s used in project management | ||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||
Project Monitoring and Controlling
|
||||||||||||||||
Introduction, Purpose, Types of control, Designing and Monitoring Systems, reporting and types. Financial Control, Quality Control, Human Resource Control, Management Control System, Project Quality Management, Managing Risks. | ||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||
Project Evaluation and Auditing
|
||||||||||||||||
Types of Project Closures, Wrap-Up closure activities, Purpose of Project Evaluation - Advantages, factors considered for termination of project, Project Termination process, Project Final report. Bidgeting, Cost estimation, cost escalation, life cycle cost. Project finance in the roads sector, Project finance (Build Own Operate (BOO) / Build Own Operate Transfer (BOOT) Projects / Build Operate and Transfer (BOT) | ||||||||||||||||
Text Books And Reference Books: T1. Project Management, Dr.Sanjeev Marwah T2. Project Management for Business Ethics, Engineering and Technology, John M Nicholas, Herman Steyn T3. PK. Joy “Total Project Management the Indian context”, Mac Milan India Lt | ||||||||||||||||
Essential Reading / Recommended Reading R1. P C Tripathi and P N Reddy, “Principles of Management”, Tata McGraw-Hill Education, 2012 R2. R. Panneerselvam and P. Senthil Kumar “Project Management” PHI learning India PVT Ltd R3. Bhavesh .M Patel, “Project Management” Vikas Publishing Hous PVT Ltd R4. Prasanna Chandra “Projects, Planning, analysis, selection financing, Implementation and Review” Tata McGraw Hill Co
| ||||||||||||||||
Evaluation Pattern
| ||||||||||||||||
IC521 - INDIAN CONSTITUTION (2020 Batch) | ||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
|||||||||||||||
Max Marks:50 |
Credits:0 |
|||||||||||||||
Course Objectives/Course Description |
||||||||||||||||
This course is aimed to create awareness on the rights and responsibilities as a citizen of India and to understand the administrative structure, legal system in India. |
||||||||||||||||
Course Outcome |
||||||||||||||||
At the end of the course, the students will be able to: 1. Explain the fundamental rights granted to citizens of India as per the Constitution 2. Describe the Directive Principles of State Policy along with its key aspects 3. Explain the legislative powers of Union Government and its elected legislature 4. Understand the Indian judiciary with respect to civil and criminal aspects 5. Explain the working of state government and its electoral powers |
Unit-1 |
Teaching Hours:6 |
Making of the Constitution and Fundamental Rights
|
|
Introduction to the constitution of India, the preamble of the constitution, Justice, Liberty, equality, Fraternity, basic postulates of the preamble Right to equality, Right to freedom, Right against exploitation, Right to freedom of religion, Cultural and educational rights, Right to constitutional remedies
| |
Unit-2 |
Teaching Hours:6 |
Directive Principles of State Policy and Fundamental Duties
|
|
Directive Principles of State Policy, key aspects envisaged through the directive principles, Article 51A and main duties of a citizen in India | |
Unit-3 |
Teaching Hours:6 |
Union Government and Union Legislature
|
|
the president of India, the vice president of India, election method, term, removal, executive and legislative powers, prime minister and council of ministers, election, powers, parliament, the Upper House and the Lower House, composition, function | |
Unit-4 |
Teaching Hours:6 |
Indian Judiciary
|
|
Supreme court, high courts, hierarchy, jurisdiction, civil and criminal cases, judicial activism | |
Unit-5 |
Teaching Hours:6 |
State Government and Elections in India
|
|
State executive, governor, powers , legislative council and assembly, composition, powers, electoral process, election commission, emergency | |
Text Books And Reference Books: R1. B R Ambedkar, ‘The Constitution of India’. Government of India R2. Durga Das Basu, Introduction to the Constitution of India, LexisNexis, 24th edition | |
Essential Reading / Recommended Reading
| |
Evaluation Pattern As per university norms | |
MA536OE6 - APPLIED STATISTICS (2020 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:3 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
To enable the students to describe the fundamentals of statistics, estimate best fit curve, correlation and regression through data analysis, develop a deep understanding of axioms, random variables and probability functions, test the hypothesis for small and large samples by various statistical tools. |
|
Course Outcome |
|
CO1: Determine the mean, median, mode and expectation by using the fundamentals of statistics {L3} CO2: Estimate the best fit curve, correlation and regression through data analysis {L2} CO3: Determine the probability density function of discrete and continuous random variables by applying the key concepts of probability. {L3} CO4: Calculate the mean, variance and probability density function of different theoretical distributions {L3} CO5: Test the hypothesis of small and large samples using various statistical tools {L5} |
Unit-1 |
Teaching Hours:6 |
Probability
|
|
Fundamentals of Statistics, Mean, median, mode, expectation. | |
Unit-2 |
Teaching Hours:6 |
Curve Fitting
|
|
Curve fitting by the method of least squares, y = a + bx, y = a + bx + cx^2, y = ax^b, y = ab^x, y = ae^x, Correlation and Regression | |
Unit-3 |
Teaching Hours:6 |
Random Variable
|
|
Basic probability theory along with examples, Random variables – Discrete and continuous random variables. Probability mass function (pmf), Probability density function (pdf), cumulative distribution function (cdf), mean, variance | |
Unit-4 |
Teaching Hours:6 |
Sampling
|
|
Theoretical distribution - Binomial, Poisson, Normal and Exponential distributions | |
Unit-5 |
Teaching Hours:6 |
Testing Tools
|
|
Testing of hypothesis, small and large samples, student t – test, F – test, chi – square test, testing by statistical tools | |
Text Books And Reference Books: T1. Ross, S., “A first course in probability”, 9th Edition, Pearson Education, Delhi, 2012. T2. T.Veerarajan, “Probability, Statistics and Random process”, 3rd Edition, Tata McGraw Hill, New Delhi, 2008. | |
Essential Reading / Recommended Reading R1. Allen., A.O., “Probability, Statistics and Queuing Theory”, Academic press, New Delhi, 1981. | |
Evaluation Pattern CIA1(COMPONENT-1) Closed book Test: Unit 1 (CO1) CIA1(COMPONENT-2) Closed book Test: Unit 2 (CO2) CIA2(Mid Semester Examination) Closed book Test: Unit 1, Unit 2 and Unit 3 (CO1, CO2, CO3) CIA3(COMPONENT-1) Closed book Test: Unit 4 (CO5) CIA3(COMPONENT-2) Closed book Test: Unit 5 (CO5) End Semester Examination | |
AU631 - AUTOMATIVE EMISSIONS AND CONTROL (2020 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
Upon completion of this course, the students will be able to ●To impart the fundamental concepts of Control systems and mathematical modeling of the system ●To study the concept of time response and frequency response of systems ●To teach the basics of stability analysis of the system
|
|
Course Outcome |
|
CO1: Summarise the complete emission scenario in the world which includes the laws which were implemented and background reason for it. CO2: Analyse different blending methods for biodiesel in order to optimize the emissions. CO3: Understand different after-treatment devices used to reduce the emission level. CO4: Discuss the effect of emissions on human health and nature. CO5: Understand how the emissions are measured using gas analyser devices |
Unit-1 |
Teaching Hours:6 |
|||||||||||||||
Effect of Vehicular Pollution
|
||||||||||||||||
Effect of Vehicular Pollution: Effect of air pollution on Human Health, Effect of air pollution on animals, Effect of air pollution on plants sampling procedures | ||||||||||||||||
Unit-1 |
Teaching Hours:6 |
|||||||||||||||
Laws and Regulations
|
||||||||||||||||
Laws and Regulations: Historical background, regulatory test procedure and test cycles, Exhaust gas pollutants (European rail road limits), particulate pollutants, European statutory values, inspection of vehicle in circulation (influence of actual traffic conditions and influence of vehicle maintenance) | ||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||
Nitrous Oxide, Carbon Monoxide and Unburned Hydrocarbon Emissions
|
||||||||||||||||
Nitrous Oxide: Nitrogen Oxides, formation of nitrogen oxides, kinetics of NO formation, formation of NO2, NOx formation in spark ignition engines, NOx formation in compression ignition engines Carbon Monoxide and Unburned Hydrocarbon Emissions: Back ground, flame quenching and oxidation fundamentals, HC and CO emissions from spark ignition engines, HC and CO emission mechanisms in diesel engines, Crankcase emissions, piston ring blow by, evaporative emissions | ||||||||||||||||
Unit-2 |
Teaching Hours:6 |
|||||||||||||||
Particulate Emissions & Influence of Fuel Properties
|
||||||||||||||||
Particulate Emissions: Characteristics of diesel particulates, particulate formation mechanics, soot formation fundamentals, soot oxidation, Spark ignition GDI engine particulates Influence of Fuel Properties: Effect of petrol, Diesel Fuel, Alternative Fuels and lubricants on emissions | ||||||||||||||||
Unit-3 |
Teaching Hours:6 |
|||||||||||||||
Pollution control measures
|
||||||||||||||||
Pollution control measures inside SI Engines & lean burn strategies, measures in engines to control Diesel Emissions Pollution control in SI & CI Engines, Design changes, optimization of injection characteristics, Exhaust gas recirculation, fuel additives , Road draught crankcase ventilation system, positive crankcase ventilation system, fuel evaporation control, advanced combustion techniques like PCCI, HCCI, RCCI etc. | ||||||||||||||||
Unit-4 |
Teaching Hours:6 |
|||||||||||||||
Exhaust Gasses
|
||||||||||||||||
Available options, physical conditions & exhaust gas compositions before treatment, Catalytic mechanism, Thermal Reactions, Installation of catalyst in exhaust lines, catalyst poisoning, catalyst light-off, NOx treatment in Diesel Engines, particulate traps, Diesel Trap oxidizer, selective catalytic reduction (SCR) | ||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||
Exhaust Gas Sampling for Measurement
|
||||||||||||||||
Exhaust Gas Sampling for Measurement, CVS & Particulate Sampling: soot particles in a cylinder, soot in exhaust tube, Sampling Methods sedimentations, and filtration, and impinge methods- electrostatic precipitation thermal precipitation, centrifugal methods Determination of mass concentration, analytical methods- volumetric-gravimetric-calorimetric methods, and Particulate number measurement techniques
| ||||||||||||||||
Unit-5 |
Teaching Hours:6 |
|||||||||||||||
Instrumentation for Pollution Measurements
|
||||||||||||||||
Instrumentation for Pollution Measurements: NDIR analyzers, Gas chromatograph, Thermal conductivity and flame ionization detectors, Analyzers for NOx, Orsat apparatus, Smoke measurement, comparison method, obscuration method, Ringelmann smoke chart, Continuous filter type smoke meter, Bosch smoke meter, Hart ridge smoke meter, correlation between smoke, opacity and PM | ||||||||||||||||
Text Books And Reference Books: 1.Fuel and Emissions Control Systems, James D Halderman, 4th edition, 2015. 2.Automobiles and Pollution - Paul Degobert (SAE), 1995. 3.Internal Combustion Engine Fundamentals – John B. Heywood, McGraw Hill Education; 1 edition (2011)
| ||||||||||||||||
Essential Reading / Recommended Reading 1. Air pollution – M.N. Rao, and H. V. Rao 2. Internal combustion engines: V. Ganesan 3. Crouse William, Automotive Emission Control, Gregg Division /McGraw-Hill. 4. Ernest, S., Starkman, Combustion Generated Air Pollutions, Plenum Press. 5. George, Springer and Donald J.Patterson, Engine emissions, Pollutant Formation and Measurement, Plenum press. 7. Obert, E.F., Internal Combustion Engines and Air Pollution, Intext Educational
| ||||||||||||||||
Evaluation Pattern
| ||||||||||||||||
AU632 - AUTOMOTIVE CHASSIS AND SUSPENSION (2020 Batch) | ||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
|||||||||||||||
Max Marks:100 |
Credits:3 |
|||||||||||||||
Course Objectives/Course Description |
||||||||||||||||
●To broaden the understanding of components of chassis & suspension systems ●To impart knowledge on various sub-systems of vehicle. ●To illustrate the importance of conventional and advanced braking systems ●To compare the working of different suspension, steering & axles.
|
||||||||||||||||
Course Outcome |
||||||||||||||||
CO1: Understand the importance of vehicle structures and substructures CO2: Classify steering systems and study a suitable subsystem of axle CO3: Identify suitable braking and suspension system CO4: Construct automotive suspension system CO5: Identify suitable wheels and tyres of the vehicle |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Introduction, Frames: General consideration relating to chassis layout, power location, types of automobiles, layout of an automobile with reference to power plant, weight distribution, stability, Numerical problems. Types of frames ,general form & dimensions, materials, frame stresses, frame sections, cross members, proportions of channel sections, constructional details, sub frames, passenger car frames, X member type frame, Box section type frame. Frames for Electric vehicles. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Front Axle and Steering Systems
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Front Axle and Steering Systems: Axle parts and materials, axle for electric vehicles, loads and stresses, factors of wheel alignment, wheel balancing, center point steering, correct steering angle, steering mechanisms, cornering force, under steer and over steer, Steering linkages, steering gears, power steering, trouble shooting, Numerical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Brakes
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Brakes: Classification of brakes, types, construction, function, operation, details of hydraulic system, mechanical system and components, types of master cylinder, bleeding of brakes, brake drums, brake linings, brake fluid, factors influencing operation of brakes. Stopping distance and time, brake efficiency, weight transfer, determination of braking torque | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Suspensions
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Suspensions: Objects, basic considerations, Types of suspension springs, construction , operation & materials, leaf springs, coil springs, torsion bar, rubber springs, plastic springs, air bellows or pneumatic suspension, hydraulic suspension, constructional details of telescopic shock absorbers, independent suspension, front wheel independent suspension, rear wheel independent suspension. | |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Wheels & Tyres
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Wheels & Tyres: Types of wheels, construction, structure and function, wheel dimensions, structure and function of tyres, static and dynamic properties of pneumatic tyres, types of tyres, materials, tyre section & designation, factors affecting tyre life. | |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Tim Gilles, “Automotive Chassis-Brakes, Steering and Suspension”, Thomson Delmer Learning, 2005. T2. Heldt.P.M, “Automotive Chassis”, Chilton Co., New York, June 2012.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1.JornsenReimpell, Helmut Stoll, “Automotive Chassis: Engineering Principles”, Elsevier, 2nd edition, 2001. R2. Newton. Steeds &Garrot, “Motor Vehicles”, SAE International and Butterworth Heinemann, 2001 R3. Judge.A.W. “Mechanism of the car”, Chapman and Halls Ltd., London, 1986. R4. Giles.J.G, “Steering Suspension and tyres”, Iliffe Book Co., London, 1988. R5. Crouse.W.H, “Automotive Chassis and Body”, McGraw Hill New York, 1971. R6.Hand book on vehicle body design – SAE publication R7. Automotive chassis by P.M. Heldt, Chilton & Co, 1970
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
AU633P - HYBRID ELECTRIC VEHICLE AND RENEWABLE ENERGY (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:75 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
To understand working of different configurations of electric vehicles, and its components, hybrid vehicle configuration and performance analysis. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Identify the need of a Hybrid Electric Vehicle and explain their working principles. CO2: Demonstrate the different types of hybrid architectures used in hybrid electric vehicles. CO3: Describe the different modes of operation used in Hybrid Electric Vehicle. CO4: Choose the appropriate type of motor, power-electronics and energy storage to design the Hybrid Electric Vehicle. CO5: Explain the working principle and characteristics of different types of fuel cell used in a Hybrid Electric Vehicle. CO6: Analyze the effect of different parameters on the performance of solar PV panel and wind turbine systems |
Unit-1 |
Teaching Hours:6 |
||||
Introduction
|
|||||
Fundamental Concepts and Definitions: Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and Environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Vehicles: Performance characteristics of road vehicles; calculation of road load- predicting fuel Economy - grid connected hybrids. Fuel cell: Fuel cell characteristics- fuel cell types – alkaline fuel cell- proton exchange Membrane; direct methanol fuel cell- phosphoric acid fuel cell- molten carbonate fuel cell- solid oxide fuel cell- hydrogen storage systems- reformers- fuel cell EV- super and ultra-capacitors- flywheels.
| |||||
Unit-2 |
Teaching Hours:6 |
||||
Drive Train
|
|||||
Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies and their operating modes, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.
| |||||
Unit-3 |
Teaching Hours:6 |
||||
Hybrid power plant specifications
|
|||||
Hybrid power plant specifications: Grade and cruise targets- launching and boosting- braking and energy recuperation- drive cycle implications- engine fraction engine downsizing and range and performance- usage requirements.
| |||||
Unit-3 |
Teaching Hours:6 |
||||
Hybrid architecture
|
|||||
Hybrid architecture: Series configuration locomotive drives- series parallel switching- load tracking architecture. Pre transmission parallel and combined configurations Mild hybrid- power assist- dual mode power split- power split with shift- Continuously Variable transmission (CVT)- wheel motors.
| |||||
Unit-4 |
Teaching Hours:6 |
||||
Sizing the drive system
|
|||||
Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems Energy storage technology: Battery basics& parameters; lead acid battery, Li-ion batteries and super capacitors, different types of batteries; battery parameters.
| |||||
Unit-4 |
Teaching Hours:6 |
||||
Energy Storage
|
|||||
Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices.
| |||||
Unit-5 |
Teaching Hours:6 |
||||
Energy Management Strategies
|
|||||
Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.
| |||||
Text Books And Reference Books: T1. Electric and hybrid vehicles: Design fundamentals – Iqbal Hussain, CRC press, 2013 T2. The Electric Car: Development & Future of Battery – Hybrid & fuel cell cars – Mike Westbrook – M H Westbrook- British Library cataloguing in Publication data | |||||
Essential Reading / Recommended Reading R1. Handbook of electric motors – Hamid A Toliyat – Gerald B Kilman – Marcel Decker
| |||||
Evaluation Pattern
| |||||
AU635P - COMPUTER AIDED ENGINEERING (2020 Batch) | |||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||
Max Marks:75 |
Credits:3 |
||||
Course Objectives/Course Description |
|||||
1.To understand the main principles, possibilities and limitation of CFD for the simulation of incompressible fluid flow and heat transfer. 2.To appreciate development of CFD computer solvers, along with the use of commercial CFD package to solve practical CFD problems. 3.To analyse and interpret the results of CFD simulation. 4.To make outline of computer aided design and analysis. 5.To provide better engineering design solutions for the engineering problems. |
|||||
Course Outcome |
|||||
CO1: To understand the use of numerical simulation and its solution methodology, including study of partial differential equations, boundary conditions, finite difference discretization, errors and grid independence. CO2: To discretize and solve steady and unsteady transport phenomena, with an understanding of numerical solution of set of linear algebraic equations, numerical stability and consistency. CO3: To discretize and solve incompressible fluid flow and heat transfer with an understanding of SIMPLE procedure and upwind schemes. CO4: Determine the deformation & stresses in 1-D bar elements by using R-R method. CO5: Determine the stiffness matrix for truss elements. |
Unit-1 |
Teaching Hours:6 |
||||
INTRODUCTION
|
|||||
INTRODUCTION: Numerical simulation, advantages of numerical simulation, numerical simulation in fluid flow and heat transfer, basic approach, methods of discretization; Partial differential equations: Classification of PDEs, elliptic, parabolic and hyperbolic equations, initial and boundary conditions
| |||||
Unit-1 |
Teaching Hours:6 |
||||
INTRODUCTION TO FINITE DIFFERENCE
|
|||||
INTRODUCTION TO FINITE DIFFERENCE: Central, forward and backward difference expressions for a uniform grid, numerical errors, optimum step size, grid independence test | |||||
Unit-2 |
Teaching Hours:6 |
||||
FINITE DIFFERENCE SOLUTION OF STEADY STATE TRANSPORT PHENOMENA
|
|||||
FINITE DIFFERENCE SOLUTION OF STEADY STATE TRANSPORT PHENOMENA: Governing equations, 1D, 2D steady state problems, discretization, methods of solution, Gauss Seidel iterative method, Relaxation
| |||||
Unit-2 |
Teaching Hours:6 |
||||
TRANSIENT ONE-DIMENSIONAL PROBLEM
|
|||||
TRANSIENT ONE-DIMENSIONAL PROBLEM: Governing equation, discretization, methods of solution- explicit (Euler) method, Crank-Nicholson method, pure implicit method. Stability and Consistency. | |||||
Unit-3 |
Teaching Hours:6 |
||||
NUMERICAL METHODS FOR CONVECTION
|
|||||
NUMERICAL METHODS FOR CONVECTION: Steady and unsteady 1D convection-diffusion, Need for upstream differencing, upwind scheme, false diffusion. | |||||
Unit-3 |
Teaching Hours:6 |
||||
NUMERICAL METHODS FOR INCOMPRESSIBLE FLUID FLOW
|
|||||
NUMERICAL METHODS FOR INCOMPRESSIBLE FLUID FLOW: Governing equations, difficulties in solving Navier Stokes equations, primitive variables approach. SIMPLE procedure, staggered grid, boundary conditions for pressure correction equation.
| |||||
Unit-4 |
Teaching Hours:6 |
||||
INTRODUCTION TO FINITE ELEMENT METHOD
|
|||||
INTRODUCTION TO FINITE ELEMENT METHOD: General description of Finite Element Method, Basic concepts of Finite Element Analysis, Application and limitations. Steps in Finite Element Analysis, Types of elements based on geometry.
| |||||
Unit-4 |
Teaching Hours:6 |
||||
FINITE ELEMENT FORMULATION TECHNIQUES
|
|||||
FINITE ELEMENT FORMULATION TECHNIQUES: Principle of virtual work, principle of minimum potential energy. Direct approach for stiffness matrix formulation of bar element. Galerkin’s method. | |||||
Unit-5 |
Teaching Hours:6 |
||||
1-D BAR ELEMENTS
|
|||||
1-D BAR ELEMENTS: Solutions of bars and stepped bars for displacements, reactions and stresses. Introduction to trusses.
| |||||
Unit-5 |
Teaching Hours:6 |
||||
INTERPOLATION MODELS
|
|||||
INTERPOLATION MODELS: Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements. 2D PASCAL’s triangle. CST elements-Shape functions and Nodal load vector, Strain displacement matrix and Jacobian for triangular and rectangular element.
| |||||
Text Books And Reference Books: T1. P. S. Ghoshdastidar, First Edition, "Computational fluid dynamics and heat transfer", Cengage India Private Limited, 2017 T2. K. A. Hoffmann, S. T. Chiang, Fourth Edition, “Computational fluid dynamics: Volume 1”, Engineering Education System, 2000 T3. T.R. Chandrupatla, A.D Belegund, “Introduction to Finite Elements in Engineering”, 3rd edition, PHI, 2002. T4. S.S. Rao, “Finite Element Method in Engineering”, 5th Edition, Elsevier, 2011.
| |||||
Essential Reading / Recommended Reading R1. John D., J. R. Anderson, First Edition, "Computational fluid dynamics: the basics with applications", McGraw Hill Education, 2017 R2. S. V. Patankar, First Edition, “Numerical heat transfer and fluid flow”, CRC Press, 1980 R3. R.D. Cook D.S Maltus, M.E Plesha, R.J.Witt, “Concepts and applications of Finite Element Analysis”, 4th edition, Wiley, 2009. R4. Daryl. L. Logon, “First Course in Finite Element Methods”, 5th edition, Cengage Learning, 2012.
| |||||
Evaluation Pattern
| |||||
AU637 - SERVICE LEARNING (2020 Batch) | |||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:4 |
||||
Max Marks:50 |
Credits:2 |
||||
Course Objectives/Course Description |
|||||
1. To develop a habit of critical reflection for life-long learning in solving societal problems. 2. To work with a community and identify a specific need that can be addressed through Involvement and engineering practices. |
|||||
Course Outcome |
|||||
CO1: Integrates academic work with community service through student involvement. [L3] [PO1, PO2, PO3, PO4, PO12]. CO2: Develop and implement a project designed to respond to that identified community need. [L3] [PO1, PO2, PO3, PO4, PO12]. CO3: Create awareness among the students as a responsible citizens of the community/society. [L3] [PO1, PO2, PO3, PO4, PO12]. |
Unit-1 |
Teaching Hours:30 |
||||||
Service Learning
|
|||||||
| |||||||
Text Books And Reference Books: T1. S. P. Sukhatme, “Solar Energy, Principles of Thermal Collection and Storage,” 6th Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 1990 T2. George Techobanoglous, “Integrated Solid Waste Management” McGraw - Hill, 1993. T3. R.E.Landrefh and P.A.Rebers,” Municipal Solid Wastes-Problems & Solutions”, Lewis, 1997. T4. Michael Allaby, “Fog, Smog and poisoned rain”, Facts on File Incorporation, 2002. ISBN:0-8160-4789-8 T5. Arceivala S. J. and Asolekar S. R., Wastewater Treatment for Pollution Control and Reuse. 3rd Edition, Tata McGraw Hill, New Delhi, 2015. | |||||||
Essential Reading / Recommended Reading R1. George Techobanoglous and Thiesen Ellasen, “Solid Waste Engineering Principles and Management”, Tata-McGraw – Hill, 1997. R2. Blide A.D. and Sundaresan, B.B., “Solid Waste Management in Developing Countries”, INSDOC, 1993. R3. Arun Kumar Jain, Ashok Kumar Jain, B.C., Punmia, “Wastewater Engineering (Environmental Engineering-II), (Including Air Pollution)”, Laxmi Publications Pvt. Ltd., 2014, ISBN 10: 8131805964, ISBN 13: 9788131805961. | |||||||
Evaluation Pattern
| |||||||
AU644E4 - TROUBLE SHOOTING SERVICING AND MAINTRNANCE OF AUTOMOBILES (2020 Batch) | |||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||
Max Marks:100 |
Credits:3 |
||||||
Course Objectives/Course Description |
|||||||
The course content is taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency: Remedy engine troubles based on diagnosis and testing using suitable instruments and tools.
|
|||||||
Course Outcome |
|||||||
CO1: Identify and diagnose the causes of the malfunctioning of an engine. CO2: Examine the troubles in the Engines and suggest remedies. CO3: Develop the confidence to use the suitable instrument and tools for diagnosis and testing of automotive engine systems. CO4: Interpret and rectify the faults after Dismantle of the engine from automobile. CO5: Develop an attitude of relying on systematic method of working using standard trouble shooting procedure. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Maintenance of Workshop, Its Schedule and Records
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Importance of maintenance - schedule and unscheduled maintenance - scope of maintenance - vehicle down time - vehicle inspection, reports, log books, trip sheet
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Engine Repair and Overhauling
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Dismantling of SI & CI engines and its components - Cleaning methods -inspection and checking - repair and reconditioning methods for all engine components - Maintenance of ignition system - fuel injection system – cooling system, lubrication system - Design trouble shooting chart for MPFI & CRDI Engines.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Maintenance, Repair and Overhauling of the Chassis
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Maintenance - servicing and repair of clutch, fluid coupling, gear box, torque converter, propeller shaft - Maintenance of front axle, rear axle, brakes, steering systems, tyre.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Maintenance and Repair of Vehicle Body
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Body panel tools for repairing - Tinkering and painting - Use of soldering, metalloid paste.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||
Maintenance and Repair of Electrical Systems and Fleet Maintenance Management
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Service, maintenance, testing and troubleshooting of battery, starter motor, alternator rectifier and transistorized regulator. Fleet maintenance requirement - investment and costs, types of work shop layout, tools and equipment - spare parts and lubricants stocking, manpower, training, workshop management, warranty, replacement policy.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. Martin W. Stockel, Martin T. Stockel, Chris Johanson, “Auto Service & Repair: Servicing,Troubleshooting, and Repairing Modern Automobiles: Applicable to All Makes and Models”, Goodheart-Willcox Publisher, 1996. 2. Automotive Service by Tim Gilles, Thomson Delmar Learning, 4th edition, 2012 3. Engine Repair by Tim Gilles, Delmar Cengage Learning, 3rd edition, 2010 4. Basic Automotive Service and Maintainance by Don Knowels,Thomson Delmar Learning, 2005
| |||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. James D. Halderman, “Chase D. Mitchell, “Automotive steering, suspension, and alignment”, Prentice Hall, 2000. 2. Martin T. Stockel, Chris Johanson, “Auto Diagnosis, Service, and Repair”, Goodheart- Willcox Publisher, 2003. 3. Vaughn D. Martin, “Automotive Electrical Systems: Troubleshooting and Repair Basics”, Prompt Publications, 1999 4. Crouse W., “Everyday Automobile Repair”, Intl. student edition, TMH, New Delhi, 1986. 5. BOSCH, “Automotive Handbook”, 8th Edition, BENTLEY ROBERT Incorporated, 2011. 195 AM-Engg&Tech- SRM-2013 6. John Doice, “Fleet maintenance”, Mcgraw Hill, New York, 1984. 7. Maleev V.L., “Diesel Engine Operation and Maintenance, McGraw Hill Book Co., New York, 1995. 8. Vehicle servicing manuals. 5. BOSCH, “Automotive Handbook”, 8th Edition, BENTLEY ROBERT Incorporated, 2011. 195 AM-Engg&Tech- SRM-2013 9. John Doice, “Fleet maintenance”, Mcgraw Hill, New York, 1984. 10. Maleev V.L., “Diesel Engine Operation and Maintenance, McGraw Hill Book Co., New York, 1995. 10. Vehicle servicing manuals.
| |||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||
AU651 - ADVANCED MACHINING LABORATORY (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:1 |
||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||
This course is designed to enlarge the application of automation in the field of manufacturing. It enables students to be acquainted with part programming and also makes them aware of types of automated systems and engineering application in manufacturing operations. |
|||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain the fundamental concept of automation in manufacturing and industrial control systems. CO2: Explain the implementation of quality and inspection techniques in automated control systems for production. CO3: Discuss the principle of automation in production systems, manufacturing operations and material handling equipments. CO4: Describe the concept of group technology and flexible manufacturing systems in automated manufacturing systems. CO5: Compare the appropriate technologies that are used in industries for effective production and to support manufacturing. |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||||
List of Experiments
|
|||||||||||||||||||||||||||||
|