|
|
|
|
|
1 Semester - 2022 - Batch | Paper Code |
Paper |
Hours Per Week |
Credits |
Marks |
EE133P | BASIC ELECTRICAL ENGINEERING | 5 | 4 | 100 |
CE134P | BASICS OF CIVIL ENGINEERING AND ENGINEERING MECHANICS | 4 | 4 | 100 |
BS136 | BIOLOGY FOR ENGINEERS | 2 | 2 | 50 |
EG135 | ENGINEERING GRAPHICS | 4 | 3 | 100 |
MA131 | MATHEMATICS - I | 4 | 3 | 100 |
VCSE111 | PCAP PROGRAMMING ESSENTIALS IN PYTHON | 4 | 0 | 100 |
PH132P | PHYSICS | 4 | 4 | 100 |
2 Semester - 2022 - Batch | Paper Code |
Paper |
Hours Per Week |
Credits |
Marks |
EC233P | BASIC ELECTRONICS | 5 | 4 | 100 |
ME235 | BASIC MECHANICAL ENGINEERING AND NANOSCIENCE | 3 | 3 | 100 |
CH232P | CHEMISTRY | 5 | 4 | 100 |
CS234P | COMPUTER PROGRAMMING | 5 | 4 | 100 |
MA231 | MATHEMATICS - II | 4 | 3 | 100 |
HS236 | TECHNICAL ENGLISH | 2 | 2 | 50 |
ME251 | WORKSHOP PRACTICE LAB | 2 | 1 | 50 |
| |
Assesment Pattern | |
ASSESSMENT - ONLY FOR THEORY COURSE (without practical component) Continuous Internal Assessment (CIA) : 50% (50 marks out of 100 marks) End Semester Examination(ESE) : 50% (50 marks out of 100 marks) Components of the CIA CIA I : Subject Assignments / Online Tests: 10 marks CIA II : Mid Semester Examination (Theory): 25 marks CIA III : Quiz/Seminar/Case Studies/Project: 10 marks Attendance: 05 marks Total: 50 marks Mid Semester Examination (MSE) : Theory Papers: The MSE is conducted for 50 marks of 2 hours duration. Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks End Semester Examination (ESE): The ESE is conducted for 100 marks of 3 hours duration. The syllabus for the theory papers are divided into FIVE units and each unit carries equal weight in terms of marks distribution ASSESSMENT - THEORY COURSE WITH PRACTICAL COMPONENT Internal Assessment (CIA) : Components of the CIA CIA I : Subject Assignments / Online Tests: 10 marks CIA II : Mid Semester Examination (Theory): 10 marks CIA III : Quiz/Seminar/Case Studies/Project: 10 marks Attendance: 05 marks Total: 50 marks Mid Semester Examination (MSE) : Theory Papers: The MSE is conducted for 50 marks of 2 hours duration. Question paper pattern; Five out of Six questions have to be answered. Each question carries 10 marks End Semester Examination (ESE): The ESE is conducted for 100 marks of 3 hours duration. The syllabus for the theory papers are divided into FIVE units and each unit carries equal weight in terms of marks distribution. ESE marks will be scaled down to 30. Laboratory component: 35 marks for overall practical CIA. A score of 40 % in overall CIA marks for the practical component is considered as the eligibility to attend the End semester examination of the respective course. | |
Examination And Assesments | |
Assessment is based on the performance of the student throughout the semester. Assessment of each paper by three Continuous Internal Assessment (CIA) and one End Semester Examinations in each semester.
| |
Department Overview: | |
Department of Sciences and Humanities aims at fostering curiosity for science among the engineering students of Christ University and help them understand fundamentals of Chemistry Physics and Mathematics. The department offers various courses and few certificate courses to B.Tech. and M.Tech. students. The department runs a regular course on professional development for undergraduate students. | |
Mission Statement: | |
Vision - To transform youth into responsible citizens having intensive caring mind for the society. Mission- Nurturing curiosity among students for the natural phenomena and helping them to apply scientific knowledge in developing technology. | |
Introduction to Program: | |
The department offers various courses to first year and higher semester B.Tech. students, and for M.Tech. students. It also offers a few certificate courses for undergraduate students. | |
Program Objective: | |
EE133P - BASIC ELECTRICAL ENGINEERING (2022 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
This course is aimed to solve and analyse DC and AC networks. It also covers the fundamental principles of alternator, transformer, motors and electric safety. It also emphasise the concepts in smart grid and electrical vehicles to cope up with current trends in electrical engineering. |
|
Course Outcome |
|
CO1: To solve DC networks CO2: To solve AC networks CO3: To understand working modes of alternator, transformer and motors CO4: To understand renewable energy systems and power converters CO5: To illustrate concepts smart grid and electrical vehicles |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DC circuits
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Global Primary Energy Reserves, Production and Consumption, Indian Energy Scenario, Basic electrical quantities, KCL, KVL, voltage and current division rules, circuit reduction using series, parallel and star-delta transformation of resistors. Superposition theorem, Thevenin’s theorem, Electromagnetism, Faraday’s laws, comparison of electric and magnetic circuits. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AC circuits
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Comparison of DC and AC, Generation of sinusoidal signal, Representation of AC, inductance and capacitance, behaviour of pure R, L and C in AC circuits, RL, RC and RLC series circuits derivations, phasor diagrams, real power, reactive power, power factor and resonance. Three phase balanced circuits, DC and AC microgrid. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power System Components
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power system Structure, Alternator-construction, working and generated voltage equation, Transformer – types, construction, working, emf equation, Switchgears (Fuse, MCB, relay), earthing, electric safety, Issues in Power system (Faults, Voltage and Frequency fluctuations, Losses, Harmonics), Energy audit, Building Energy Management System | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Smart Grid
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Smart grid architecture and features, List of Smart grid projects in India, Advanced Metering Infrastructure (AMI), Home automation, Application of IoT in electrical systems, communication systems in electrical systems, Artificial intelligence in power system, Solar standalone system and its characteristics, Solar PV grid tied system, Industrial automation | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
E-mobility
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power Electronics Convertors, Mobile Adopter, Inverters, Building blocks of electric vehicles, Specifications, Types of Electric Vehicles – BEV, HEV, PEV, FCEV, Charging station and its types, Different types of batteries, E-Mobility service providers, Single phase induction motors - construction and Working, BLDC motor and its applications in e-mobility, Energy Conversation Act 2010, Kyoto Protocol and Paris Agreements | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:30 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
List of Experiments
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Verification of superposition theorem Wiring practice – multiple switching and two way switching Phase angle measurement in R, RL and RLC circuits Energy measurement in single phase circuits – with R and RL loads Power factor improvement Regulation and efficiency of single phase transformer. Speed – torque characteristics of a DC shunt motor Speed – torque characteristics of single phase induction motor Characteristics of solar PV modules Electrical appliances control using Arduino Variable DC voltage using DC-DC converter (Demonstration) Power circuit control using relay and a contactor. (Demonstration)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. D. P. Kothari and I. J. Nagrath, “Basic Electrical Engineering”, Tata McGraw Hill, 2010. T2. V K. Mehta, Vivek Mehta, “Principles of Power System”, S. Chand, 2005, reprint 2015. T3. D. P. Kothari and K C.Singal, “Renewable Energy Sources and Emerging Technologies”, PHI, 2011. T4. James Larminie, John Lowry, ‘Electric Vehicle Technology Explained’, Wiley , 2015. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Reference Books: R1. Weedy, Cory, Ekanayake, ‘ Electric Power Systems’, John Wiley & Sons; 5th edition, 2012. R2. Hina Fathima (Editor), ‘Hybrid-Renewable Energy Systems in Microgrids: Integration, Developments and Control’, Woodhead Publishing Series in Energy, 2018. R3. Nikos Hatziargyriou, ‘Microgrids: Architectures and Control’, Wiley, 2014 D. C. Kulshreshtha, “Basic Electrical Engineering”, McGraw Hill, 2009.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
Minimum marks required to pass in practical component is 40%. Pass in practical component is eligibility criteria to attend Theory End semester examination for the same course. A minimum of 40 % required to pass in ESE -Theory component of a course. Overall 40 % aggregate marks in Theory & practical component, is required to pass a course. There is no minimum pass marks for the Theory - CIA component. Less than 40% in practical component is refereed as FAIL. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CE134P - BASICS OF CIVIL ENGINEERING AND ENGINEERING MECHANICS (2022 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. The students will understand the basics of civil engineering and Engineering Mechanics 2. The students will understand the basic principles and laws of forces of nature, measurements, calculations and SI units. 3. The students will understand mechanics that studies the effects of forces and moments acting on rigid bodies that are either at rest or moving with constant velocity along a straight path for static condition only.
4. The students will understand the basic concepts of forces in the member, centroid, moment of inertia and Kinetics of bodies. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Understand basics of Civil Engineering, Surveying and Materials used in Construction. Comprehend the action of Forces, Moments and other loads on systems of rigid bodies Compute the reactive forces on beams and to examine the effect of friction on bodies at rest Compute Centroid and Moment of Inertia of regular and built up sections. Express the relationship between the motions of bodies and equipped to pursue studies in allied courses in mechanics. To experimentally investigate properties of constructions materials, concepts of surveying and basics of engineering mechanics |
Unit-1 |
Teaching Hours:9 |
||||||||||
Introduction To Civil Engineering Surveying and
|
|||||||||||
Introduction To Civil Engineering Surveying and Building Materials Scope of different fields of Civil Engineering Concepts of surveying Importance, objectives and types. Materials of construction Stones, Bricks, Steel, Timber, PCC, RCC, PSC and composite materials. Material behavior. | |||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||
Introduction to Engineering Mechanics and Equilibrium of forces
|
|||||||||||
Introduction to Engineering Mechanics Basic idealizations-Particle, Continuum, Rigid body and Point force, Newtons’ laws of motion. Force, classification of force systems, Principle of Physical Independence of forces, Principle of Superposition of forces and Principle of Transmissibilty of forces, Moment, Couple and its characteristics. Composition and resolution of forces, Paralleologram Law of forces, Polygon law. Resultant of coplanar concurrent force systems. Composition of Coplanar Concurrent and Non Concurrent Force System. Resultant of coplanar concurrent force systems. Varignon’s Theorem, Resultant of coplanar non concurrent force systems. Equilibrium of force systems
Free body Diagram, Lami’s Theorem, Equations of Equilibrium, Equilibrium of coplanar concurrent forces. | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
Friction
|
|||||||||||
Friction: Introduction, Laws of static friction, limiting friction, angle of friction, angle of repose, block friction on horizontal and inclined planes, ladder | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
Support Reactions of beamsand Friction
|
|||||||||||
Support Reactions
Types of loads and supports, Types of beams, Statically determinate and indeterminate beams, Support Reactions in beams, Numerical Problems on support reactions for statically determinate beams (point load, Uniformly distributed load, Uniformly varying load and moments). | |||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||
Centroid and moment of inertia
|
|||||||||||
Definition of centroid and centre of gravity, Centroid of simple plane figures and built up sections. Moment of inertia / Second Moment of area, Parallel axis theorem and Perpendicular axis theorem, Moment of Inertia of composite areas, Polar Moment of inertia and radius of gyration. | |||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||
Kinematics and Kinematics
|
|||||||||||
Definitions, Displacement, Average velocity, Instantaneous Velocity, Speed, Acceleration, Average Acceleration, Variable Acceleration, Acceleration due to gravity. Types of motion-Rectilinear, Curvilinear and Projectile motion. Relative motion and Motion under Gravity, Numerical Problems. D’Alemberts Principle and its application in Plane motion. | |||||||||||
Text Books And Reference Books: T1. Bhavikatti S.S. Elements of Civil Engineering, 4th Edition and Engineering Mechanics ,2nd edition, New Delhi, Vikas Publishing House Pvt. Ltd, 2008. T2. Shesh Prakash and Mogaveer, Elements of Civil Engineering and Engineering Mechanics, 1st edition, New Delhi , PHI learning Private Limited,2009.
T3. Jagadeesh T.R. and Jay Ram, Elements of Civil Engineering and Engineering Mechanics, 2nd edition, Bangalore, Sapana Book House, 2008. | |||||||||||
Essential Reading / Recommended Reading R1. Timoshenko, and Young, Engineering Mechanics, Tata McGraw-Hill, New Delhi, 2013. R2. Meriam J. L, and Kraige, L. G, Engineering Mechanics, 5/E, Volume I, Wiley India Edition, India, Feburary 2018 R3. Irvingh H Shames, Engineering Mechanics, 4/E, PHI learning Private Limited, New Delhi, 2008 R4. Ferdinand P. Beer and E. Russel Johnston Jr., Mechanics for Engineers: Statics, McGraw-Hill Book Company, New Delhi. International Edition 2013 R5. Bansal R. K, Engineering Mechanics, Laxmi Publications (P) Ltd, New Delhi, 2015 Goyal and Raghuvanshi, Engineering Mechanics, New Edition, PHI learning Private Limited, New Delhi. 2011 R6. Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2011. R6. Kukreja C.B., Kishore K.Ravi Chawla., Material Testing Laboratory Manual, Standard Publishers & Distributors 1996. R7. Gambhir M.L., Concrete Manual, Dhanpat Rai & Sons, New Delhi, 2014 Duggal S.K., Surveying, Vol-I, Tata McGraw Hill - Publishing Co. Ltd. New Delhi.
R8. Punmia. B.C., Surveying Vol–1, Laxmi Publications, New Delhi. | |||||||||||
Evaluation Pattern CIA -1 (20) CIA-2 (50) CIA 3 (20) ESE (100) | |||||||||||
BS136 - BIOLOGY FOR ENGINEERS (2022 Batch) | |||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||
Max Marks:50 |
Credits:2 |
||||||||||
Course Objectives/Course Description |
|||||||||||
Understanding and application of biological systems results in better healthcare and any engineer, irrespective of the parent discipline (mechanical, electrical, civil, computer, electronics, etc.,) can use their disciplinary skills toward designing/improving biological systems. This course is designed to convey the essentials of engineering biology to provide a frame-work for more specific understanding about the structure and function of human body and biosensors. An overview of the working of latest medical diagnostic tools, including X-ray digital radiography, X-ray computer tomography, NMR, MRI, ultrasonic and thermal imaging is provided along with the basic concepts of biomechanics- muscle action, range of motion principle, force motion principle, passive tendon muscle, bone and ligaments is provided. The course will introduce to the students the various biomaterials, their interaction with the human body and applications in heart valves, orthopedic devices, cochlear and dental implants, soft and hard tissue replacement. |
|||||||||||
Course Outcome |
|||||||||||
At the end of the course, the student will be able to: CO1 Understand the general anatomy of the human body and the composition and function of blood, properties of cardiac muscles, cardiac cycle and respiratory system CO2 Explain the general operating principles and construction of biosensors; working of the types of biosensors - metabolism, semiconductor, optical, piezoelectric, and immune-based biosensors. CO3 Understand the general operating principles of medical imaging techniques - X-ray digital radiography, x-ray computed tomography, nuclear medical imaging systems, magnetic resonance imaging system, ultrasonic imaging, and thermal imaging. CO4 Understand key mechanical concepts- 9 fundamentals of biomechanics, muscle action, range of motion principle, force motion principle; biomechanics of passive tendon unit, bone and ligaments. CO5 Study biomaterials (polymers, metals, ceramics, hydrogels, degradable biomaterials); their interaction with host; applications in heart valves, orthopedic, cochlear and dental implants, soft and hard tissue replacements. |
Unit-1 |
Teaching Hours:9 |
HUMAN PHYSIOLOGY
|
|
General Anatomy of the body, Tissues level of organization (Types, origin, function & repair), Composition and Function of blood and its components: WBC, RBC, platelets, Hematopoiesis, Structure and function of heart, Properties of cardiac muscle, The Cardiac Cycle, Electrocardiogram –heart beat, HRV, QRS cycle, Functional anatomy of muscular system, types of muscles, respiratory system- mechanics, gas exchange and transport | |
Unit-2 |
Teaching Hours:10 |
BIOSENSORS
|
|
General principles - Construction of biosensors, immobilization of receptor components in biosensors- Types –metabolism, semiconductor, optical, piezoelectric, immunosensors - Applications – lab-on-a-chip, food and beverage, defence, environmental applications, Medical instruments | |
Unit-3 |
Teaching Hours:8 |
MODERN IMAGING SYSTEMS
|
|
X ray, digital radiography – x-ray computed tomography- Nuclear medical imaging systems, Magnetic resonance imaging system, Positron emission tomography, Ultrasonic imaging system, thermal imaging, . | |
Unit-4 |
Teaching Hours:10 |
BIOMECHANICS
|
|
Key mechanical concepts - 9 fundamentals of biomechanics -Muscle action, Range of motion principle, Force motion principle - Tissue loads -Response of tissue to force -Biomechanics of passive muscle tendon unit- Biomechanics of bone - Biomechanics of ligaments - Mechanical characteristics of muscles- Force time principle - Stretch-shortening cycle | |
Unit-5 |
Teaching Hours:8 |
MATERIALS FOR ORGANS AND DEVICES
|
|
Materials – polymers, metals, ceramics, hydrogels, degradable biomaterials - Host reaction to biomaterials and their evaluation -Application of biomaterials – heart valves, orthopaedic applications, Cochlear and dental implants, soft tissue replacements, Hard tissue replacements | |
Text Books And Reference Books: T1. F. Scheller, F. Schubert, “Biosensors, Volume 11 of Techniques and Instrumentation in Analytical Chemistry”, Elsevier. T2. Vinod Kumar Khanna, “Implantable Medical Electronics: Prosthetics, Drug Delivery, and Health Monitoring”, Springer, 2015 T3. Khandpur, “Handbook of Biomedical Instrumentation”, Tata McGraw-Hill Education, 2003 T4. David A. Winter, “Biomechanics and Motor Control of Human Movement”, John Wiley & Sons, 2009 T5. Duane Knudson, “Fundamentals of Biomechanics”, Springer Science & Business Media, 2013 T6. Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, “Biomaterials Science: An Introduction to Materials in Medicine”, Academic Press, 2012 T7.G. Pocock, C. D. Richards, and D. A. Richards, Human physiology. Oxford: Oxford University Press, 2018. T8 L. Sherwood, Fundamentals of human physiology. Belmont, CA: Brooks/Cole, Cengage Learning, 2012.
| |
Essential Reading / Recommended Reading R1. Bansi Dhar Malhotra, Anthony Turner, “Advances in Biosensors: Perspectives in Biosensors”, Volume 5 of Advances in Biosensors, Elsevier, 2003 | |
Evaluation Pattern As per university norms | |
EG135 - ENGINEERING GRAPHICS (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
|
|
Course Outcome |
|
CO1: Understand the importance of BIS standards and scales and be able to use it in Engineering drawings and be Able to graphically construct geometric 2 Dimensional figures with hand tools and solve numericals related to them. [L1,L2] [PO1] CO2: Use the CAD software and be able to create basic 2D computer geometries like points, lines, and planes. [L1,L2] [PO1,PO2] CO3: Understand the concept of projection and sectioning of solids and be able to create the drawings manually. [L1,L2] [PO1,PO2] CO4: To create Drawings of surfaces of regular solids after development Manually. [L1,L2] [PO1,PO2] CO5: To create isometric drawings from Orthographic projections by using an isometric scale Manually and using CAD software. [L1,L2] [PO2,PO5] CO6: To create projection of solids, sectioning development of surface using CAD software and be able to draw basic 3D shapes in CAD. [L1,L2] [PO2,PO5] |
Unit-1 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Orthographic Projections (First Angle Projection Only)
|
|||||||||||||||||||||||||||||||||
Principles of orthographic projections, introduction to first angle and third angle projection, projections of points, lines (inclined to both planes) and planes. (No application problems). | |||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Introduction to Engineering Drawing
|
|||||||||||||||||||||||||||||||||
Principles of Engineering Graphics and their significance, usage of Drawing instruments, BIS conventions, lettering, Scales – Plain, Diagonal and Vernier Scales. | |||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:4 |
||||||||||||||||||||||||||||||||
Introduction of Computer Aided Engineering Drawing (CAED)
|
|||||||||||||||||||||||||||||||||
Introduction and customization of user interface consisting of set up of the drawing page and the printer, including scale settings, setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning, orthographic constraints, snap to objects manually and automatically, producing drawings by using various coordinate input entry methods to draw straight lines, applying various ways of drawing circles. Annotations, layering & other functions covering applying dimensions to objects, applying annotations to drawings, setting up and use of layers, layers to create drawings, create, edit and use customized layers, changing line lengths through modifying existing lines. | |||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Projections of Regular Solids
|
|||||||||||||||||||||||||||||||||
Projection of solids inclined to both the Planes, draw simple annotation, dimensioning and scale (both manual and CAD software). | |||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Sections of solids
|
|||||||||||||||||||||||||||||||||
Sections and sectional views of right angular solids - Prism, Cylinder, Pyramid, Cone– Auxiliary Views; (both manual and CAD software). | |||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Development of surfaces
|
|||||||||||||||||||||||||||||||||
Development of surfaces of right regular solids - prism, pyramid, cylinder and cone; draw the sectional orthographic views of geometrical solids. | |||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Isometric Projections
|
|||||||||||||||||||||||||||||||||
Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of simple and compound Solids, conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions. | |||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Overview of Computer Graphics
|
|||||||||||||||||||||||||||||||||
Demonstrating knowledge of the theory of CAD software: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Projection of solids, Isometric of Simple and compound Solids, sections of solids and development of surfaces. | |||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:14 |
||||||||||||||||||||||||||||||||
Introduction to Modeling and Assembly
|
|||||||||||||||||||||||||||||||||
Introduction to Computer aided modeling of solid part and assembly using CAD software Parametric and non-parametric solid and wireframe models, part editing and 2D drafting of assembly. | |||||||||||||||||||||||||||||||||
Text Books And Reference Books: Text Books: 1. Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House. 2. N S Parthasarathy and Vela Murali (2015) Engineering Drawing, Oxford University Press. 3. Shah, M.B. & Rana B.C. (2009), Engineering Drawing and Computer Graphics, Pearson Education. 4. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication. | |||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Reference Books: 1. S. Trymbaka Murthy, “Computer-Aided Engineering Drawing”, I.K. International Publishing House Pvt. Ltd., New Delhi. 2. Narayana, K.L. & P Kannaiah (2008), Textbook on Engineering Drawing, Scitech. 3. K.R. Gopalakrishna, “Engineering Graphics”, 15th Edition, Subash Publishers Bangalore. | |||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||
MA131 - MATHEMATICS - I (2022 Batch) | |||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||
To empower the students with various methods to solve first order nonlinear differential equations and system of linear simultaneous equations; utilize different statistical measures to interpret data; acquire knowledge on partial and vector differentiation |
|||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||
CO1: Apply computational techniques to solve system of linear simultaneous equations {L3} {PO1, PO2, PO3} CO2: Apply Leibnitz rule of differentiation under integral sign to evaluate definite integrals for multivariable functions {L3} {PO1, PO2, PO3, PO9} CO3: Utilize statistical techniques for data interpretation {L3} {PO1, PO2, PO3} CO4: Solve first order nonlinear differential equations by reducing into homogenous, linear and exact forms {L3} {PO1, PO2, PO3} CO5: Interpret problems related to directional derivatives, scalar potential using vector differential operator {L2} {PO1, PO2, PO3} |
Unit-1 |
Teaching Hours:7 |
Linear Algebra
|
|
Fundamental concepts of Matrix, Rank of a Matrix, Consistency and solution of linear simultaneous equations, Eigen values and Eigen Vectors, Diagonalization, Computational Techniques using Open source Software’s. | |
Unit-2 |
Teaching Hours:10 |
Applied Calculus - I
|
|
Partial Differentiation: Partial derivatives, Total differential coefficient, Differentiation of composite and implicit functions, Jacobians and properties. Leibnitz’s Rule of differentiation under integral sign, Reduction formulae and evaluation of these integrals with standard limits - Problems. | |
Unit-3 |
Teaching Hours:8 |
Statistical Methods ? I
|
|
Basics of Statistics, Measures of Central Tendency, Measures of Dispersion, Correlation and Regression, Curve Fitting by the Method of Least Squares. | |
Unit-4 |
Teaching Hours:10 |
Differential Equation ? I
|
|
Solution of first order and first degree differential equations: Reducible to Homogeneous, Linear and Exact differential equation, Applications of Differential Equations. | |
Unit-5 |
Teaching Hours:10 |
Vector Calculus ? I
|
|
Vector differentiation. Velocity, Acceleration of a particle moving on a space curve. Vector point function. Directional Derivative, Gradient, Divergence, Curl, Laplacian. Solenoidal and Irrotational vectors - Problems. Standard vector identities. | |
Text Books And Reference Books: Dr. B. S. Grewal, “Higher Engineering Mathematics”, Khanna Publishers. H. K. Das & Rajnish Verma, “Higher Engineering Mathematics”, S. Chand & Company Ltd., 2011. | |
Essential Reading / Recommended Reading R1. Erwin Kreyszig, “Advanced Engineering Mathematics”, 8th Edition, John Wiley & Sons, Inc, 2005 R2. Thomas and Finney, “Calculus”, 9th Edition, Pearson Education, 2004 R3. Peter V. O’Neil, “Advanced Engineering Mathematics”, Thomson Publication, Canada, 2007 R4. B. V. Ramana, “Higher Engineering Mathematics”, Tata McGraw – Hill, 2009. R5. Michael Artin, “Algebra”, 2nd Edition, Prentice Hall of India Private Limited, New Delhi, 2002 R6. Kenneth Hoffman and Ray Kunze, “Linear Algebra”, 2nd Edition, Prentice Hall of India Private Limited, New Delhi, 2002 R7. George F. Simmons and Steven G. Krantz, “Differential Equation, Theory, Technique and Practice”, Tata McGraw – Hill, 2006. R8. M. D. Raisinghania, “Ordinary and Partial Differential Equation”, Chand (S.) & Co. Ltd., India, March 17, 2005. | |
Evaluation Pattern Students to be evaluated on Contituous Internal Assessments. There would be Three CIA components CIA - 1 [20 Marks] : Would have two components a) Multiple Choice Questions for Ten Marks and b) Closed Booked Test as an Assignment for Ten Marks CIA - 2 [50 Marks] : Would be closed book test. CIA - 3 [20 Marks] : Would have two components a) Multiple Choice Questions for Ten Marks and b) Closed Booked Test as an Assignment for Ten Marks. | |
VCSE111 - PCAP PROGRAMMING ESSENTIALS IN PYTHON (2022 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:0 |
Course Objectives/Course Description |
|
The PCAP: Programming Essentials in Python course covers all the basics of programming in Python 3, as well as general computer programming concepts and techniques. The course also familiarizes the student with the object-oriented approach. |
|
Course Outcome |
|
CO1: To familiarize students with general computer programming concepts like conditional execution, functions, loops. CO2: To learn and understand Python programming language syntax, semantics, and the Runtime environment, as well as with general coding techniques and object-oriented programming. |
Unit-1 |
Teaching Hours:30 |
Basics level Python
|
|
Introduction to Python and Computer Programming, Data Types, Variables, Basic, Input-Output Operations, Basic Operators,Boolean Values, Conditional Execution, Loops, Lists and ListProcessing, Logic and BitwiseOperations, Functions, Tuples, Dictionaries, and Data Processing.
| |
Unit-2 |
Teaching Hours:30 |
Intermediate level Python
|
|
Exceptions, Strings, String and List Methods,Object Oriented Programming in Python,Working with filesystem, Directory trees and Files,Selected Python Standard Library modules (os, date, datetime,calendar). | |
Text Books And Reference Books: https://www.netacad.com/courses/programming/pcap-programming-essentials-python | |
Essential Reading / Recommended Reading https://www.netacad.com/courses/programming/pcap-programming-essentials-python | |
Evaluation Pattern Online Assessment | |
PH132P - PHYSICS (2022 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
SUBJECT DESCRIPTION Course objectives: This paper contains five UNITS which are Modern Physics, Quantum Mechanics, Electrical Conductivity in Solids, Elastic and Dielectric Properties of Materials, Lasers, Optical Fibers. This paper aims at enabling the students to understand the fundamentals covered in this paper. SUBJECT OBJECTIVES: • Identify the fundamental aspects of modern physics and quantum mechanics. • Compare classical and quantum free electron theory. • Outline the salient properties of elastic and dielectric materials. • Apply the concepts learnt in Laser, Fiber optics in the field of Engineering. • Apply optical phenomenon in technology.
· |
|
Course Outcome |
|
CO1: Explain the principles of Classical Physics and Modern Physics. CO2: Explain the salient features of Quantum Physics. CO3: Apply the principles of Physics to study free electron theory CO4: Differentiate between the different materials for various scientific applications. CO5: Apply the principles of optics in the field of LASERS and Optical Fiber. CO6: Utilize the theoretical concepts of classical physics, optics and material science to have hands on training for a better understanding of the subject. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Modern Physics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction, Planck’s theory - Deduction of Wien’s displacement law and Rayleigh Jean’s law from Planck’s law, Compton effect, de Broglie hypothesis – extension to electron particle. Phase velocity, group velocity, expression for group velocity based on superposition of waves, relation between group velocity and particle velocity. Problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Quantum Mechanics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heisenberg’s uncertainty principle and its physical significance. Application of uncertainty principle (Non-existence of electron in the nucleus). Wave function. Properties and Physical significance of a wave function Schrodinger - Time independent wave equation – Application: Setting up of a one dimensional Schrödinger wave equation of a particle in a potential well of infinite depth : Probability density and Normalization of wave function – Energy Eigen values and Eigen function. Problems.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical Conductivity in Solids
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Classical free-electron theory. Introduction, assumptions and limitations of classical free-electron theory.
Quantum free-electron theory – Postulates of quantum free electron theory, Fermi - Dirac Statistics. Fermi-energy – Fermi factor. Density of states, Expression for electrical resistivity/conductivity - Merits of Quantum free electron theory. Problems.
Physics of Semiconductors: Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Holes concentration in valence band (only mention the expression), Conductivity of
semiconductors (derivation)
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Materials Science
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Elasticity : Introduction - Bending of beams – Single Cantilever – Application of Cantilever in AFM, Young’s modulus-Non uniform bending. Problems.
Dielectrics : Dielectric constant and polarisation of dielectric materials. Types of polarisation. Equation for internal fields in liquids and solids (one dimensional). Clausius – Mossotti equation. Ferro and Piezo – electricity(qualitative). Frequency dependence of dielectric constant. Important applications of dielectric materials. Problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Applied Optics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lasers: Principle and production. Einstein’s coefficients (expression for energy density). Requisites of a Laser system. Condition for Laser action. Principle, Construction and working of He-Ne and semiconductor diode Laser. Applications of Laser – Laser welding, cutting and drilling. Measurement of atmospheric pollutants. Problems.
Optical Fibers : Introduction, Principle andPropagation of light in optical fibers. Angle of acceptance. Numerical aperture. Types of optical fibers and modes of propagation. Applications –optical fiber communication system , Attenuation (Qualitative Analysis). Problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:30 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physics Laboratory (Any Eight to be performed)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: Text Books: 1. M.N.Avadhanulu and P.G. Kshirsagar, “A Text Book of Engineering Physics”, S.Chand & Company Ltd, Revised Edition 2014. 2. John Wiley “Engineering Physics”,Wiley India Pvt. Ltd, 1st Edition 2014.
4. S.P. Basavaraju, “ Engineering Physics”, Revised Edition 2015. 5. Charles Kittel, “Introduction to Solid State Physics” , 8th Edition. 6. Arthur Beiser, “Concepts of Modern Physics” , Special Indian Edition 2009. 7. Ajoy Ghatak, “Optics”, 5th Edition 2012.
REFERENCE BOOKS: 1. R.K. Gaur and S.L. Gupta, "Engineering Physics", Dhanpatrai and Sons, New Delhi, 2011. 2. Sehgal Chopra Sehgal, “ Modern Physics ", Tata McGraw-Hill, Revised Edition, 2014. 3. Halliday, Resnick and Krane, "Fundamentals of Physics Extended", John Wiley and Sons Inc., New York, 10th Edition, 2013. 4. P.Mani, “Engineering Physics”, Dhanam publishers, Revised Edition 2011. 5. H.J. Sawant, "Engineering Physics", Technical Publications, Revised Edition, 2014. 6. V. Rajendran, “Engineering Physics”, Tata Mcgraw Hill Publishing Company Limited, 1st Edition, 2009. 7. K.Eric Drexler, “Nanosystems - Molecular Machinery, Manufacturing and Computation”, John Wiely & Sons, 2005. 8. J David, N Cheeke , “Fundamentals and Applications of Ultrasonic Waves”, CRC Press 2nd Edition, 2012. 9. Frederick J Bueche and Eugene Hecht “Schaum Outline of Theory and Problems of College Physics”, Tata McGraw-Hill, 11th Edition, 2012. 10. M. Ali Omar, “ Elementary Solid State Physics”, Addison-Wesley 1st Edition, 1993.
Physics Lab: Text Books: Physics Laboratory Manual for the First / Second Semester B.Tech, CUFE, 2015. Reference Book : Sathyaseelan H, “Laboratory Manual in Applied Physics”, New Age International, 3rdEdition, 2012.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Arthur Beiser, “Concepts of Modern Physics” , Special Indian Edition 2009 S.P. Basavaraju, “ Engineering Physics”, Revised Edition 2015. R.K. Gaur and S.L. Gupta, "Engineering Physics", Dhanpatrai and Sons, New Delhi, 2011. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern CIA 1 - 20 Marks has 2 components Test 1 - UNIT 1 - 10 Marks Test 2 - UNIT 2/UNIT 3 - 10 Marks
CIA II Mid Sem Exam Unit 1, Unit 2 and half of Unit 3 - 50 marks
CIA III (20 Marks) - 1 component Unit 4 and Unit 5 Test/ASSIGNMENT/Mini Project - 20 marks
OVERALL LAB Evaluation (50 Marks) has 3 components • Component 1- Evaluation of observation Book – 10 Marks • Component 2- Viva- one to one Interaction for individual experiment – 10 Marks
• Component 3- End Sem Lab Exam – 30 Marks Evaluation Rubrics-
Component 2, Viva- one to one Interaction – 10 Marks Evaluation Rubrics:
Component 3, ESE Lab exam-10+10+5+5=30 Marks
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||
EC233P - BASIC ELECTRONICS (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
This course aims at imparting knowledge about electronic and digital systems, semiconductor theory and operational amplifiers. This course also includes a practical component which allows the students to recognize the different elements used in electronics and digital systems. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Describe the basic semiconductor principles , working of p-n junction diode and transistors [L2] [PO1] CO2: Demonstrate the operation of diodes in rectifiers, voltage regulator and clipper [L3] [PO1] CO3: Explain the operation of bipolar junction transistor including the amplification and biasing [L2] [PO1, PO6] CO4: Explain the operation and applications of Operational Amplifier [L2] [PO1] CO5: Discuss conversions between binary, decimal, octal and hexadecimal number system [L2] [PO1] CO6: Implement digital logic gates and its application as adders. [L3] [PO1, PO6] |
Unit-1 |
Teaching Hours:9 |
BASIC SEMICONDUCTOR AND PN JUNCTION THEORY
|
|
Atomic Theory – Atom, Electron Orbits and Energy Levels - Conduction in solids – Electron Motion and Hole Transfer, Conventional Current and Electron Flow –Conductors, Insulators and Semiconductors – Energy Band Diagrams – Variation of band gap with temperature. Intrinsic and Extrinsic Semiconductors – Doping, n type and p type material, Majority and minority carriers, Charge Carrier Density, Mass Action Law. Semiconductor Conductivity – Drift Current, Diffusion Current, Charge Carrier Velocity, Condyctivity.The pn Junction – Biased Junctions – Junction Currents and Voltages.VI Characteristics – Static and Dynamic Resistance.Zener diode characteristics, Zener and Avalanche breakdown. | |
Unit-2 |
Teaching Hours:9 |
DIODE APPLICATIONS
|
|
Diode Approximations – DC Load Line Analysis - DC voltage applied to diodes (Si and zener diodes only). (Simple analysis using KCL and KVL). Rectifiers – Half Wave rectifier – Full Wave Rectifier – Bridge Rectifier : dc load current and voltage, rms load current and voltage, ripple factor, efficiency, PIV. Simple Capacitor Filter(Analysis not expected) – Simple Shunt Zener Voltage Regulator | |
Unit-3 |
Teaching Hours:9 |
BIPOLAR JUNCTION TRANSISTOR
|
|
Bipolar Junction Transistors: Transistor Construction – Operation – Common Base Configuration – Transistor Amplifying action – Common Collector – Common Emitter. Transistor currents.Common emitter current gain – Common Base Current gain – Relationship. Transistor Biasing : Operating Point – Significance – Fixed Bias and Voltage Divider Bias – Simple analysis. | |
Unit-4 |
Teaching Hours:9 |
INTRODUCTION TO OPERATIONAL AMPLIFIERS
|
|
Block diagram, Op-amp transfer characteristics, Basic Op-amp parameters and its value for IC 741- offset voltage and current, input and output impedance, Gain, slew rate, bandwidth, CMRR, Concept of negative feedback, Inverting and Non-inverting amplifiers, Summing Amplifier, Subtractor, Differential Amplifier, integrator, differentiator, Voltage follower, Introduction to Oscillators, the Barkhausen Criterion for Oscillations, Applications of Oscillator | |
Unit-5 |
Teaching Hours:9 |
DIGITAL ELECTRONICS
|
|
Sampling theorem, Introduction, decimal system, Binary, Octal and Hexadecimal number systems, addition and subtraction, fractional number, Binary Coded Decimal numbers. Boolean algebra, Logic gates, Two Variable and three variable K – maps - Half-adder, Full-adder, Logic Design based on two and three input variables only. | |
Text Books And Reference Books: T1. David A. Bell, “Electronic Devices and Circuits” – Vth Edition, OUP, 2011 T2. N. P. Deshpande, “Electronic Devices and Circuits – Principles and Applications”, TMH, 2017 T3. Robert L Boylestad& Louis Nashelsky, "Electronic Devices and Circuit Theory", 3rd Edition, 2015 T4. Morris Mano, “Digital Logic and Computer Design”, PHI, EEE, 2014 | |
Essential Reading / Recommended Reading R1. Donald A. Neamen, “Electronic Circuits”, 3rd Edition, TMH, 2017 R2. Thomas L. Floyd, “Electronic Devices”, Seventh Edition, Pearson Education, 2012 R3. Albert Malvino, David. J. Bates, ―Electronic Principle, 8th Edition, Tata McGraw Hill, 2015 | |
Evaluation Pattern CIA 70 marks ESE 30 marks | |
ME235 - BASIC MECHANICAL ENGINEERING AND NANOSCIENCE (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
1. To elucidate and critically demonstrate the various types of Energy resources. 2. To distinguish and elaborate on the different types of prime movers. 3. To describe the functioning of refrigeration and air-conditioning. 4. To evaluate and apply the concepts of nano-science in real engineering applications. 5. To demonstrate and apply the process of machining and metal joining in the basic applications. |
|
Course Outcome |
|
CO1: Classify the energy resources and Describe the principle of harnessing renewable resources. [L1, L2] [PO1, PO2]. CO2: List the types of I.C. Engines and turbines, and discuss the working principle of I.C. engines and turbines. [L1, L3] [PO1, PO2, PO3]. CO3: Define the terms refrigeration and air-conditioning, and identify their application areas. [L1, L2, L3] [PO1, PO2, PO3]. CO4: Explain the fundamental concept of nanotechnology and describe the characterization methods for nanomaterials. [L1, L2, L3] [PO1, PO2]. CO5: Summarize the operations performed by using machine tools and distinguish between the welding soldering and brazing process. [L1, L2, L3] [PO1, PO2, PO3, PO4]. |
Unit-1 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||
CONVENTIONAL ENERGY RESOURCES
|
|||||||||||||||||||||||||||||||||
Conventional Energy resources: Fossil fuel and nuclear fuel, Merits and demerits. | |||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||
NON-CONVENTIONAL ENERGY RESOURCES
|
|||||||||||||||||||||||||||||||||
Non-conventional energy sources: Solar, Wind, hydraulic, Ocean-thermal, Geothermal, Tidal energy and biomass energy plants working principle. Merits and demerits. | |||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||
I.C. ENGINES
|
|||||||||||||||||||||||||||||||||
Classification, I.C. Engines parts and their function, working of 2 Stroke and 4 stroke engines. Basic terms - Indicated power, brake power frictional power, thermal efficiency, mechanical efficiency (simple problems). | |||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||
TURBINES
|
|||||||||||||||||||||||||||||||||
Steam Generators: Boilers, fire and water tube boilers (Lancashire and Babcock and Will Cox boiler-working with simple sketches). Steam turbines: Classifications, Principle of operation of Impulse and reaction turbines. Gas Turbines: Open cycle and closed cycle gas turbines working principle. Water Turbines: Classification, working principle of Pelton wheel, Francis turbine and Kaplan turbine. | |||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||
AIR-CONDTIONING
|
|||||||||||||||||||||||||||||||||
Definition, Types, Room air-conditioning working principle (with a sketch), Applications. | |||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||||||||||||||||||
REFRIGERATION
|
|||||||||||||||||||||||||||||||||
Types of refrigerants and properties of good refrigerant, Refrigerating effect and unit of Refrigeration (definition). Working principle of vapour Compression refrigeration and vapour absorption refrigeration (with a sketch). Applications areas of a refrigeration system. | |||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:7 |
||||||||||||||||||||||||||||||||
INTRODUCTION TO NANOTECHNOLOGY
|
|||||||||||||||||||||||||||||||||
Introduction to about Nanomaterials, characterization of nanomaterials-SEM, XRD, AFM and Mechanical properties, Advantages, limitations and applications of Nanomaterials. | |||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||
METAL JOINING
|
|||||||||||||||||||||||||||||||||
Definitions, classification of soldering, Brazing and welding. Differences between soldering, brazing and Welding. Description of Electric Arc welding and Oxy-Acetylene gas welding (Simple sketch). | |||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||
MACHINE TOOLS
|
|||||||||||||||||||||||||||||||||
Lathe Machine-Types, Parts and different operations like turning, facing, grooving, parting off, taper turning, and threading (simple sketch) Drilling Machine-Types, Parts and different operations like drilling, reaming, boring, counterboring, counter sinking and tapping (simple sketch). Milling Machine-Up milling, down milling, Plane milling, End milling, Slot milling and gear cutting (sketches only for following operations). | |||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. K.R. Gopalkrishna, “A text Book of Elements of Mechanical Engineering”, Subhash Publishers, Bangalore, 2008. T2. S. Trymbaka Murthy, “A Text Book of Elements of Mechanical Engineering”, 3rd revised edition, I .K. International Publishing House Pvt. Ltd., New Delhi. 2010. T3. P.K.Nag, “Engineering Thermodynamics” Tata McGraw-Hill Education, 2005. T4. B.S. Murthy, P. Shankar, Baldev Raj, B.B. Rath and James Munday, “Nano Science and Nano Technology ", University Press IIM, 2002. | |||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Dr. R. P. Reddy, “Elements of Mechanical Engineering”, 1st Edition, Himalaya Publishing House, New Delhi, 2012. R2. Hajra Choudhury S K, “Elements of Workshop Technology” 13th Edition, Volume 1, Machine Tools, India Book Distributing Company Calcutta, 2010. R3. Hajra Choudhury S K, “Elements of Workshop Technology” 13th Edition, Volume 2, Machine Tools, India Book Distributing Company Calcutta, 2012. R4. Charles P. Poole and Frank J. Owens, “Introduction to Nanotechnology”, Wiley India Edition, 2012. | |||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||
CH232P - CHEMISTRY (2022 Batch) | |||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||
This paper contains five units which are Spectroscopic techniques and applications, Electrochemical Energy Systems, Corrosion Science, Chemical thermodynamics, Material Characterization Techniques and Water Technology. And it aims at enabling the students to know various Spectroscopic techniques, corrosion and its control, basics of thermodynamics, concepts in water technology and material characterization. |
|||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||
CO1: Students will be able to explain the basic principles of IR spectroscopy and UV Visible Spectroscopy. {L2} {PO1, PO2, PO3} CO2: Students will be able to outline the oxidation and reduction reactions relevant to studying corrosion science and electrochemistry concepts. {L2} { PO1, PO2, PO9} CO3: Students will be able to analyze the various types of corrosion occurring on metal surfaces by knowing the electrochemical theory of corrosion. {L4} { PO1, PO2, PO3} CO4: Students will be able to explain the basic concepts of thermodynamics, 1st law, and 2nd law of thermodynamics. {L2} { PO1, PO2} CO5: Students will be able to illustrate the fundamentals of characterization techniques and wastewater treatment. {L3} { PO1, PO2, PO3, PO4, PO9} CO6: Demonstrates competence in collecting, recording, and interpreting data in the experiments performed. {L3} { PO1,PO4, PO7,PO9 } |
Unit-1 |
Teaching Hours:10 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Spectroscopic Techniques and Applications
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction- Types of spectrum - electromagnetic spectrum - molecular energy levels - Beer Lambert’s law (Numerical). UV-Visible Spectroscopy – Principle - Types of electronic transitions - Energy level diagram of ethane and butadiene. Instrumentation of UV-Visible spectrometer and applications. IR-Spectroscopy – Principle - Number of vibrational modes - Vibrational energy states of a diatomic molecule and -Determination of force constant of diatomic molecule (Numerical) –Applications. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrochemical Energy Systems
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conductance, Ionic conductance, Transport number, Ionic mobility, activity coefficient and mean activity coefficients. Single electrode potential- origin, sign conventions. Derivation of the Nernst equation. Standard electrode potential Construction of Galvanic cell–classification - primary, secondary and concentration cells, Concentration cell with and without transference, EMF of a cell, notation and conventions. Reference electrodes –calomel electrode, Ag/AgCl electrode. Measurement of single electrode potential. Numerical problems on electrode potential and EMF. Ion-selective electrode- glass electrode, Determination of pH using a glass electrode. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Corrosion Science
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Corrosion - definition, Chemical corrosion and Electro-chemical theory of corrosion, Types of corrosion, Differential metal corrosion, Differential aeration corrosion (pitting and water line corrosion), and Stress corrosion. Factors affecting the rate of corrosion, Corrosion control: Inorganic coatings – Anodizing and Phosphating, Metal coatings –Galvanization and Tinning, Corrosion Inhibitors, Cathodic and Anodic protection. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:11 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemical Thermodynamics
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition of thermodynamic terms: system, surrounding etc. Types of systems, intensive and extensive properties.First law of thermodynamics, internal energy, enthalpy, relation between internal energy & enthalpy, heat capacity, free energy.Second law of thermodynamics, Spontaneous & non-spontaneous reactions, Gibbs-Helmholtz equation & related problems. Clausius-Clapeyron equation, Lavoisier & Laplace law, Exergonic & endergonic reactions in cells, Hess’s law & its applications, Van’t Hoff isotherm, Equilibrium constant. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:7 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Material Characterization & Water Technology
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Theory and Applications of X-ray Photoelectron Spectroscopy (XPS), Powder Xray diffraction (pXRD) Water Technology: Impurities in water, Biochemical Oxygen Demand and Chemical Oxygen Demand. Numerical problems on BOD and COD. Sewage treatment. Purification of water- Desalination, Flash evaporation, Electrodialysis and Reverse Osmosis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-6 |
Teaching Hours:30 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chemistry Laboratory
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1. Molecular weight determination of cellulose acetate by using Ostwald’s viscometer 2. Estimation of copper by spectrophotometric method. 3. Conductometric estimation of an acid using standard NaOH solution 4. Determination of pKa value of a weak acid using pH meter. 5. Potentiometric estimation of FAS using standard K2Cr2O7 solution. 6. Estimation of Total Hardness of a sample of water using disodium salt of EDTA. 7. Corrosion rate determination by weight loss method 8. Estimation of Calcium Oxide (CaO) in the given sample of cement by rapid EDTA method 9. Adsorption by Solids from Solution 10. Preparation of aspirin from salicylic acid
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Dr. B.S. Jai Prakash, “Chemistry for Engineering Students”, Subhas Stores, Bangalore, Reprint 2015 T2. M. M. Uppal, “Engineering Chemistry”, Khanna Publishers, Sixth Edition, 2002 T3. Jain and Jain, “A text Book of Engineering Chemistry”, S. Chand & Company Ltd. New Delhi, 2009, Reprint- 2016 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1.C. N. Banwell, “Fundamentals of Molecular Spectroscopy”, McGraw-Hill, 4th Edition. 1995. R2. Donald L. Pavia, “Introduction to Spectroscopy”, Cengage Learning India Pvt. Ltd., 2015. R3. Atkins P.W. “Physical chemistry” ELBS 9 Edition 2009, London R4. Stanley E. Manahan, “Environmental Chemistry”, Lewis Publishers, Reprint 2009 R5. B. R. Puri, L. R. Sharma & M. S. Pathania, ”Principles of Physical Chemistry”, S. Nagin Chand & Co., 33rd Ed., Reprint- 2016 R6. Kuriakose J.C. and Rajaram J. “ Chemistry in Engineering and Technology” Vol I & II, Tata Mc Graw – Hill Publications Co Ltd, NewDelhi, First edition Reprint 2010 R7. Ertl, H. Knozinger and J. Weitkamp, "Handbook of Heterogeneous Catalysis" Vol 1-5, Wiley - VCH. R8. B. Viswanathan, S. Sivasanker, A.V. Ramaswamy, "Catalysis: Principles & Applications" CRC Press, March 2002, Reprint 2011. R9. D K Chakrabarty, B. Viswanathan, ”Heterogeneous Catalysis” New Age International Publishers, 2008. R9. J. Bassett, R.C. Denny, G.H. Jeffery, “Vogel's textbook of quantitative inorganic analysis”,5th Edition R10. Sunita and Ratan Practical Engineering Chemistry, S.K. Kataria & Sons, 2013. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
· Minimum marks required to pass in practical component is 40%. · Pass in practical component is eligibility criteria to attend Theory End semester examination for the same course. · A minimum of 40 % required to pass in ESE -Theory component of a course. · Overall 40 % aggregate marks in Theory & practical component, is required to pass a course. · There is no minimum pass marks for the Theory - CIA component. · Less than 40% in practical component is refereed as FAIL. · Less than 40% in Theory ESE is declared as fail in the theory component. · Students who failed in theory ESE have to attend only theory ESE to pass in the course | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CS234P - COMPUTER PROGRAMMING (2022 Batch) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
● To provide exposure to problem-solving through programming. ● To provide a basic exposition to the goals of programming ● To enable the student to apply these concepts in applications which involve perception, reasoning and learning. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Make use of the fundamental concepts of computer programming. L3 CO2: Apply Input and Output Operations, decision making and Looping statements for solving problems. L3 CO3: Build an application using arrays and functions to achieve code reuse. L3 CO4: Develop an application using pointers. L3 CO5: Examine the usage of Structures and Files concepts. L4 |
Unit-1 |
Teaching Hours:9 |
Algorithms and Flowcharts, Constants, Variables and Datatypes, Operators
|
|
Algorithms and flowcharts: Algorithms, Flowcharts, Examples on algorithms and flowcharts. Basic structure of a C program, C Tokens, Data types. Declaration of variables. Operators: Arithmetic operators, Relational operators, Logical operators, ssignment operators, Increment and Decrement operators, Conditionaloperator, Bitwise operators, Special operators, Arithmetic expressions, Evaluation of expressions, Precedence of Arithmetic operators, Type conversions in expressions,Operator precedence and associatively. | |
Unit-2 |
Teaching Hours:9 |
Decision Making And Branching, Looping
|
|
Managing input and output operations: Reading a character, writing a character, Formatted Input, Formatted Output Decision making and branching: Decision making with if statement, Simple if statement, The if…else statement, Nesting of if…else statements, The else … if ladder, Theswitch statement, The ?: operator, The Goto statement Looping: The while statement, The do statement, The for statement, Jumps in Loops | |
Unit-3 |
Teaching Hours:9 |
Arrays, User Defined Functions
|
|
Arrays: One-dimensional Arrays, Declaration of one-dimensional Arrays, Initialization of one-dimensional Arrays, Two-dimensional Arrays, Initializing two dimensionalArrays. User-defined functions: Need for User-defined Functions, A multi-function Program, Elements of user - defined Functions, Definition of Functions, Return Values andtheir types, Function Calls, Function Declaration, Category of Functions, No Arguments and no Return Values, Arguments but no Return Values, Arguments with ReturnValues, No Argument but Returns a Value, Functions that Return Multiple Value, recursion – recursive functions, Limitations of recursion. Storage Class Specifiers. | |
Unit-4 |
Teaching Hours:9 |
Pointers and Strings
|
|
String concepts: declaration and initialization, String I/O functions, Array of strings, String manipulation function. Pointers: Understanding the pointers, Accessing the Address of a Variable, Declaring Pointer Variables, Initialization of Pointer Variables, Accessing a Variable through itsPointer, Pointer Expressions, Pointer Increments and Scale Factor, Pointers and Arrays, Pointers and Character Strings, Pointers as Function Arguments. DynamicMemory Allocation | |
Unit-5 |
Teaching Hours:9 |
Structures, Unions and Files
|
|
Structures and Unions: Basic of structures, structures andFunctions, Arrays of structures, structure Data types, type definition.Unioins Files: Defining, openingand closing of files, Input and output operations, Standard Library Functions for Files, | |
Text Books And Reference Books: T1. Deitel and Deitel, "C How to Program", 8th Edition, Pearson,2016. T2. Herbert Schildt, "C++ : The Complete Reference", McGraw - Hill, Osborne Media; 4th edition 2017. T3. Yashvant Kanetkar, “Let Us C”, 15th Edition, BPB Publications, 2016. | |
Essential Reading / Recommended Reading R1:Ashok N Kamthane, “ Programming in C”, Pearson Publishers – 3 rd Edition 2015. R2. Dennis P. Curtin, Kim Foley, KunalSen, Cathleen Morin, “Information Technology: The Breaking wave”, Tata MC GrawHill Companies, 2010 (Reprint). R3: E Balagurusamy , "Programming In Ansi C ", Tata McGraw-Hill Education,2017. Online Resources: W1.Daniel Weller, and Sharat Chikkerur. 6.087 Practical Programming in C. January IAP 2010. Massachusetts Institute of Technology: MIT OpenCourseWare,https://ocw.mit.edu. License: Creative Commons BY-NC-SA. W2. https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html W3. https://www.w3resource.com/c-programming-exercises/ | |
Evaluation Pattern Theory and Practical: Continuous Internal Assessment - 70% End Semester Exam - 30%
| |
MA231 - MATHEMATICS - II (2022 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
To enable the students to find the radius of curvature, integrate multivariate functions, solve higher order homogeneous and non-homogeneous linear differential equations with constant and variable coefficients, verify Green’s, Stoke’s and Gauss Divergence theorem, solve higher order differential equations using Laplace and inverse Laplace Transform. |
|
Course Outcome |
|
CO1: Calculate the angle between the polar curves and radius of curvature by applying differentiation {L3} {PO1, PO2, PO3} CO2: Evaluate the area and volume of solids using double and triple integration. {L4} {PO1, PO2, PO3, PO9} CO3: Solve linear differential equations of higher order by using inverse differential operator, method of undetermined coefficients and variation of parameters. {L3} {PO1, PO2, PO3} CO4: Solve initial value problems using Laplace Transforms method {L3} {PO1, PO2, PO3} CO5: Establish the relation between the line and surface integral, surface and volume integral using Green?s, Stoke?s and Gauss Divergence theorem {L3} {PO1, PO2, PO3} |
Unit-1 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Applied Calculus ? II
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Polar Curves, Angle between the Radius Vector and Tangents, Pedal Equations, Derivative of arc length, Radius of curvature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Integral Calculus
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Applications of Integration – Length, Area, Surface Area and volume of solids of revolution. Double integrals - Cartesian and Polar co – ordinates, Change of order of integration, Change of Variables between cartesian and polar co – ordinates, triple integration, area as a double integral, Volume as a triple integral. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Differential Equations ? II
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Linear differential equations of second and higher order with constant coefficients. Method of variation of parameters. Legendre’s and Cauchy’s homogeneous differential equations. Solution of Differential Equations using Open Source Software’s. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:10 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Laplace Transforms
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Definition - Transforms of elementary functions – Properties, Derivatives and integrals of transforms- Problems. Periodic function. Unit step function and unit impulse function, Inverse transforms, Solutions of linear differential equations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Vector Calculus ? II
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Vector Integration - Green’s theorem in a plane, Gauss’s divergence theorems, Stoke’s, (without proof) and simple application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books:
T1. Dr. B. S. Grewal, “Higher Engineering Mathematics”, 43rd Edition, Khanna Publishers, June 2014. T2. Dr. B. V. Ramana “Higher Engineering Mathematics”, 2018 Edition, Mc Graw Hill Publishers, 2018.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Erwin Kreyszig, “Advanced Engineering Mathematics”, 10th Edition, John Wiley & Sons, Inc., 2011 R2. B.V. Ramana, “Higher Engineering Mathematics”, 6th Reprint, Tata-Macgraw Hill, 2008. R3. Glyn James, “Advanced Modern Engineering Mathematics”, Pearson Education. R4. Sheldon M. Ross, “Introduction to Probability Models”, 9th Edition, Academic Press, 2008 R5. Oliver C. Ibe, “Fundamentals of Applied Probability and Random Process”, Academic Press, 2007 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern CIA – 1 Component – 1: 10 Marks Test / Assignment/ MCQ - Description Test /Assignment / MCQ from Unit – I Learning Outcome(s) After the Assignment / Test / MCQ, the students will be able to find the angle between the polar curves and radius of curvature by applying differentiation. Evaluation Rubrics
MCQ Description Ten Multiple Choice Questions. Each question carries one Marks
Make – Up Policy: If any student has missed the assignment on genuine medical grounds (Document need to be produced), then he/she can write a new assignment given by the respective subject teacher with prior permission.
CIA – 1
Component – 2: 10 Marks
Test /Assignment / MCQ from Unit – II Learning Outcome(s) After the Assignment / Test / MCQ, the students will be able to find the Area / Volume of any bounded curves.
MCQ Description Ten Multiple Choice Questions. Each question carries one Marks Make – Up Policy: If any student has missed the assignment on genuine medical grounds (Document need to be produced), then he/she can write a new assignment given by the respective subject teacher with prior permission.
CIA – 3 Component – 1 : 10 Marks Test / Assignment / MCQ Description Assignment on Unit IV [Laplace Transforms]. Learning Outcome(s) After the Assignment / Test / MCQ, the students will be able to develop initial value problems using Laplace Transforms. Evaluation Rubrics
MCQ Description Ten Multiple Choice Questions. Each question carries one Marks Make – Up Policy: If any student has missed the assignment on genuine medical grounds (Document need to be produced), then he/she can write a new assignment given by the respective subject teacher with prior permission.
CIA – 3 Component – 2 : 10 Marks Test / Assignment / MCQ Description Assignment on Unit V [Vector Calculus - II]. Learning Outcome(s) After the Assignment / Test / MCQ, the students will be able to evaluate the area, volume of the region by Green’s, Stokes and Gauss Divergence Methods. Evaluation Rubrics
MCQ Description Ten Multiple Choice Questions. Each question carries one Marks Make – Up Policy: If any student has missed the assignment on genuine medical grounds (Document need to be produced), then he/she can write a new assignment given by the respective subject teacher with prior permission. | |||||||||||||||||||||||||||||||||||||||||||||||||||||
HS236 - TECHNICAL ENGLISH (2022 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description: Technical English Course consists of five units covering; Phonetics and Oral Communication, Vocabulary Building, Syntactic Structures for Writing, Identifying Common Errors in Communication, Writing and Presentation Skills. These components will be explained followed by tasks to strengthen communication skills of the learners by strengthening their vocabulary, improve reading comprehension skills and effective writing skills with appropriate command over grammar Course objectives: Upon Successful completion of this course, the students will have reliably demonstrate the ability to respond effectively, efficiently, and appropriately to written and oral communication in ways that demonstrate comprehension and evaluation of its purpose and meaning. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Communicate effectively with right pronunciation; take part in discussions with better speaking skill and exhibit better listening comprehension skills. CO2: Have better understanding of the role of vocabulary for effective communication. CO3: Exhibit proficiency in the mechanics of English language skills: listening, speaking, reading, and writing. CO4: Identify and correct common errors in communication. CO5: Write good paragraphs and academic essays. Make an organized and well-prepared oral presentation to meet the needs of individuals and small groups. |
Unit-1 |
Teaching Hours:6 |
||||||||||
Phonetics and Oral Communication
|
|||||||||||
Basics of speech production: English Phonetic symbols, Pronunciation, Syllable, Word Stress, Sentence Stress / Rhythm, Intonation and Listening Comprehensions. | |||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||
Vocabulary Building
|
|||||||||||
Basic concept in morphology; Word formation, Root of words, Suffixes and Prefixes and their role in word formation and creation. Vocabulary Building: Basic concept in semantics; synonyms, antonyms, homonyms, homographs, homophones, misused and confused words | |||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||
Syntactic Structures for Writing
|
|||||||||||
Parts of speech, Phrases and clauses, Sentence structure and types, Verb Patterns and Tenses, Articles, Prepositions | |||||||||||
Unit-4 |
Teaching Hours:6 |
||||||||||
Identifying Common Errors in Communication
|
|||||||||||
Subject verb agreement (concord), Redundancies, cliché’s, fragments, run-on errors, misplaced and dangling modifiers, techniques of writing precisely | |||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||
Writing and Presentation Skills
|
|||||||||||
Paragraph Writing: Structure, types and strategy to write paragraphs. Essay Writing: Types and Structure of an academic essay: writing introduction, thesis statement, body paragraphs, concluding paragraph. Characteristics of an essay: unity, support, coherence and sentence skills. Formal presentation skills. | |||||||||||
Text Books And Reference Books: T1. Practical English Usage. Michael Swan. OUP. 1995. T2. Remedial English Grammar. F.T. Wood. Macmillan.2007. | |||||||||||
Essential Reading / Recommended Reading R1 On Writing Well. William Zinsser. Harper Resource Book. 2001. R2. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006. R3. Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011. R4. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press. R5: Guide To Patterns And Usage In Englishby A.S. Hornby. Oxford University Press | |||||||||||
Evaluation Pattern
| |||||||||||
ME251 - WORKSHOP PRACTICE LAB (2022 Batch) | |||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||
Max Marks:50 |
Credits:1 |
||||||||||
Course Objectives/Course Description |
|||||||||||
1. To demonstrate and practice the tools and devices required for machining operations. 2. To understand and comply with the safety precautions involved during the operation of types of equipment. 3. To provide an understanding of the joining processes. 4. To develop practical knowledge of sheet metal and smithy shops. 5. To study the tools required in wood cutting and carpentry shops. |
|||||||||||
Course Outcome |
|||||||||||
CO1: Demonstrate an understanding of tools and operations performed on workpieces of various shapes. {L1,L2} {PO1,PO2, PO7, PO10} CO2: Select and perform a range of machining operations to produce a given model. { L1,L2,L3} {PO1,PO6,PO7,PO9,PO10} CO3: Identify and use marking out tools, handtools, measuring equipments and to work to prescribed tolerances. { L1,L2,L3} {PO1,PO2,PO6,PO9,PO10} |
Unit-1 |
Teaching Hours:4 |
||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||
| |||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
||||||||||||||||||||||||
Metal cutting Shop
|
|||||||||||||||||||||||||
Fitting (Any one experiment)
Sheet Metal (Any one experiment)
| |||||||||||||||||||||||||
Unit-3 |
Teaching Hours:4 |
||||||||||||||||||||||||
Welding Shop
|
|||||||||||||||||||||||||
Welding (Any one experiment)
| |||||||||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
||||||||||||||||||||||||
Smithy Shop
|
|||||||||||||||||||||||||
Smithy (Any one experiment)
| |||||||||||||||||||||||||
Unit-5 |
Teaching Hours:8 |
||||||||||||||||||||||||
Lathe Machine Shop
|
|||||||||||||||||||||||||
Lathe work (Any one experiment)
| |||||||||||||||||||||||||
Text Books And Reference Books: Text Books: 1. S. K. H. Choudhury, A. K. H. Choudhury, Nirjhar Roy, “The Elements of Workshop Technology”, Vol 1 & 2, Media Promoters and Publishers, Mumbai, 2016. 2. P. N. Rao, “Manufacturing Technology: Foundry, Forming and Welding”, 4th Edition Volume 1, McGraw Hill Publications, 2018. | |||||||||||||||||||||||||
Essential Reading / Recommended Reading Reference Books: 1. P. Kannaiah and K.L. Narayana, “Manual on Workshop Practice”, Scitech Publications, 2006. 2. T Jeyapoovan, “Engineering Practices Lab - Basic Workshop Practice Manual,” 2006. 3. H.S.Bawa, “Workshop Practice”, Tata McGraw Hill Publishing Company Limited, 2007. | |||||||||||||||||||||||||
Evaluation Pattern
|