|
|
|
3 Semester - 2020 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU332P | THERMODYNAMICS AND THERMAL ENGINEERING | - | 5 | 4 | 100 |
AU334P | FLUID MECHANICS AND FLUID MACHINES | - | 5 | 4 | 100 |
BS351 | ENGINEERING BIOLOGY LABORATORY | - | 2 | 2 | 50 |
EVS321 | ENVIRONMENTAL SCIENCE | - | 2 | 0 | 0 |
HS321 | PROFESSIONAL ETHICS | - | 2 | 2 | 50 |
MA331 | MATHEMATICS - III | - | 3 | 3 | 100 |
ME333P | STRENGTH OF MATERIALS | - | 5 | 4 | 100 |
MIA351 | FUNDAMENTALS OF DESIGN | - | 6 | 04 | 100 |
MICS331P | INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS | - | 5 | 4 | 100 |
MIMBA331 | PRINCIPLES OF MANAGEMENT | - | 4 | 3 | 100 |
MIME331 | SENSORS AND DATA ACQUISITION | - | 45 | 4 | 100 |
MIPSY331 | UNDERSTANDING HUMAN BEHAVIOR | - | 4 | 4 | 100 |
4 Semester - 2020 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU431 | AUTOMOTIVE TRANSMISSION | Core Courses | 2 | 2 | 50 |
AU432P | AUTOMOTIVE MATERIALS AND MANUFACTURING TECHNOLOGY | Core Courses | 5 | 4 | 100 |
AU433P | AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS | Core Courses | 5 | 4 | 100 |
AU434P | AUTOMOTIVE ENGINES | Core Courses | 5 | 4 | 100 |
AU435 | KINEMATICS AND THEORY OF MACHINES | Core Courses | 3 | 3 | 100 |
AU436 | ENTREPRENEURSHIP DEVELOPMENT | Core Courses | 2 | 2 | 50 |
CY421 | CYBER SECURITY | - | 2 | 0 | 50 |
MIA451A | ENVIRONMENTAL DESING AND SOCIO CULTURAL CONTEXT | - | 6 | 04 | 100 |
MIA451B | DIGITAL ARCHITECTURE | - | 6 | 04 | 100 |
MIA451C | COLLABORATIVE DESIGN WORKSHOP | - | 6 | 04 | 100 |
MICS432P | INTRODUCTION TO PROGRAMMING PARADIGN | - | 5 | 4 | 100 |
MIMBA431 | ORGANISATIONAL BEHAVIOUR | - | 4 | 3 | 100 |
MIPSY432 | PEOPLE THOUGHTS AND SITUATIONS | - | 4 | 4 | 100 |
5 Semester - 2019 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU531 | DESIGN OF AUTOMOTIVE COMPONENTS | - | 2 | 2 | 50 |
AU532P | AUTOMOTIVE ENGINE SYSTEMS | - | 5 | 4 | 100 |
AU533 | COMPUTER AIDED MACHINE DRAWING | - | 3 | 3 | 100 |
AU544E1 | AUTOMOTIVE AERODYNAMICS | - | 3 | 3 | 100 |
AU544E2 | HYDRAULICS AND PNEUMATIC CONTROL | - | 3 | 3 | 100 |
AU544E3 | ENERGY ENGINEERING | - | 3 | 3 | 100 |
AU544E4 | OPERATIONS RESEARCH | - | 3 | 3 | 100 |
AU544E5 | SOLID MECHANICS | - | 3 | 3 | 100 |
AU551 | COMPUTATIONAL LABORATORY | - | 2 | 1 | 100 |
CEOE561E01 | SOLID WASTE MANAGEMENT | - | 3 | 3 | 100 |
CEOE561E03 | DISASTER MANAGEMENT | - | 4 | 3 | 100 |
CSOE561E04 | PYTHON FOR ENGINEERS | - | 3 | 3 | 100 |
ECOE5603 | AUTOMOTIVE ELECTRONICS | - | 3 | 3 | 100 |
ECOE5608 | FUNDAMENTALS OF IMAGE PROCESSING | - | 3 | 3 | 100 |
ECOE5610 | EMBEDDED BOARDS FOR IOT APPLICATIONS | - | 3 | 3 | 100 |
EE536OE03 | INTRODUCTION TO HYBRID ELECTRIC VEHICLES | - | 4 | 3 | 100 |
EE536OE06 | ROBOTICS AND AUTOMATION | - | 4 | 3 | 100 |
HS522 | PROJECT MANAGEMENT AND FINANCE | - | 3 | 3 | 100 |
IC521 | CONSTITUTION OF INDIA | - | 2 | 0 | 50 |
ME561E03 | BASIC AUTOMOBILE ENGINERING | - | 3 | 3 | 100 |
ME561E04 | SMART MATRIALS AND APPLICATIONS | - | 3 | 3 | 100 |
ME561E05 | BASIC AEROSPACE ENGINEERING | - | 3 | 3 | 100 |
MICS533P | BASICS OF COMPUTER ARCHITECTURE AND OPERATING SYSTEMS | - | 5 | 4 | 100 |
MIMBA531 | ANALYSIS OF FINANCIAL STATEMENTS | - | 4 | 4 | 100 |
MIPSY533 | HUMAN ENGINEERING | - | 4 | 4 | 100 |
PH536OE1 | NANO MATERIAL AND NANO TECHNOLOGY | - | 4 | 3 | 100 |
6 Semester - 2019 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU631 | AUTOMATIVE EMISSIONS AND CONTROL | Core Courses | 2 | 2 | 50 |
AU632 | AUTOMOTIVE CHASSIC VEHICLE BODY ENGINEERING AND SAFETY | Core Courses | 3 | 3 | 100 |
AU633P | HYBRID ELECTRIC VEHICLE AND RENEWABLE ENERGY | Core Courses | 4 | 3 | 75 |
AU635P | COMPUTER AIDED ENGINEERING | Core Courses | 4 | 3 | 75 |
AU637 | SERVICE LEARNING | Core Courses | 2 | 2 | 50 |
AU644E4 | TROUBLE SHOOTING SERVICING AND MAINTRNANCE OF AUTOMOBILES | Discipline Specific Elective | 3 | 3 | 100 |
AU651 | ADVANCED MACHINING LABORATORY | Core Courses | 2 | 1 | 50 |
BTGE631 | CORPORATE SOCIAL RESPONSIBILITY | Generic Elective | 2 | 2 | 100 |
BTGE632 | DIGITAL MEDIA | Generic Elective | 2 | 2 | 100 |
BTGE633 | FUNCTIONAL ENGLISH | Generic Elective | 2 | 2 | 50 |
BTGE634 | GERMAN | Generic Elective | 2 | 2 | 100 |
BTGE635 | INTELLECTUAL PROPERTY RIGHTS | Generic Elective | 2 | 2 | 100 |
BTGE636 | INTRODUCTION TO AVIATION | Generic Elective | 2 | 2 | 100 |
BTGE637 | PROFESSIONAL PSYCHOLOGY | Generic Elective | 2 | 2 | 100 |
BTGE651 | DATA ANALYTICS THROUGH SPSS | Generic Elective | 2 | 2 | 100 |
BTGE652 | DIGITAL MARKETING | Generic Elective | 2 | 2 | 100 |
BTGE653 | DIGITAL WRITING | Generic Elective | 2 | 2 | 100 |
BTGE654 | PHOTOGRAPHY | Generic Elective | 2 | 2 | 100 |
BTGE655 | ACTING COURSE | Generic Elective | 2 | 2 | 100 |
BTGE656 | CREATIVITY AND INNOVATION | Generic Elective | 2 | 2 | 100 |
BTGE657 | PAINTING AND SKETCHING | Generic Elective | 2 | 2 | 100 |
MICS634P | INTRODUCTION TO COMPUTER NETWORKS | - | 5 | 4 | 100 |
MIMBA631 | DATA ANALYSIS FOR MANAGERS | - | 4 | 4 | 100 |
MIPSY634 | SCIENCE OF WELL BEING | - | 4 | 4 | 100 |
7 Semester - 2018 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU731 | NOISE VIBRATION AND HARSHNESS CONTROL | - | 3 | 3 | 100 |
AU732 | ENGINEERING ECONOMICS AND AUTOMOTIVE COST ESTIMATION | - | 3 | 3 | 100 |
AU733P | AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS | - | 5 | 4 | 100 |
AU734P | HEAT AND MASS TRANSFER | - | 5 | 4 | 100 |
AU736 | SERVICE LEARNING | - | 4 | 2 | 50 |
AU781 | INTERNSHIP | - | 30 | 2 | 50 |
BTGE 732 | ACTING COURSE | - | 2 | 2 | 100 |
BTGE 734 | DIGITAL WRITING | - | 2 | 2 | 100 |
BTGE 737 | PROFESSIONAL PSYCHOLOGY | - | 4 | 2 | 100 |
BTGE 744 | DIGITAL MARKETING | - | 2 | 2 | 100 |
BTGE 745 | DATA ANALYTICS THROUGH SPSS | - | 2 | 2 | 100 |
BTGE735 | DIGITAL MEDIA | - | 2 | 2 | 100 |
BTGE736 | INTELLECTUAL PROPERTY RIGHTS | - | 4 | 2 | 100 |
BTGE738 | CORPORATE SOCIAL RESPONSIBILITY | - | 2 | 2 | 100 |
BTGE739 | CREATIVITY AND INNOVATION | - | 2 | 2 | 100 |
BTGE741 | GERMAN | - | 2 | 2 | 100 |
BTGE749 | PAINTING AND SKETCHING | - | 2 | 2 | 100 |
BTGE750 | PHOTOGRAPHY | - | 2 | 2 | 100 |
BTGE754 | FUNCTIONAL ENGLISH | - | 2 | 2 | 50 |
ME751 | ANALYSIS LABORATORY | - | 2 | 1 | 50 |
8 Semester - 2018 - Batch | Course Code |
Course |
Type |
Hours Per Week |
Credits |
Marks |
AU831E1 | AUTOMOTIVE EMISSIONS AND CONTROL | Discipline Specific Elective | 3 | 3 | 100 |
AU831E6 | AUTOMOTIVE AERODYNAMICS | Discipline Specific Elective | 3 | 3 | 100 |
AU832E2 | ENTREPRENEURSHIP DEVELOPMENT | Discipline Specific Elective | 3 | 3 | 100 |
AU833E3 | TOTAL QUALITY MANAGEMENT | Discipline Specific Elective | 3 | 3 | 100 |
AU881 | PROJECT WORK | Core Courses | 12 | 6 | 200 |
AU882 | COMPREHENSION | Core Courses | 2 | 2 | 50 |
CY821 | CYBER SECURITY | - | 2 | 2 | 50 |
IC821 | CONSTITUTION OF INDIA | Add On Course | 2 | 0 | 50 |
AU332P - THERMODYNAMICS AND THERMAL ENGINEERING (2020 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
1. Understanding of the first law of thermodynamics and various forms of work that can occur. 2. An ability to evaluate entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations. 3. An understanding of the use of the Gibbs and Helmholtz free energies as equilibrium criteria, and the statement of the equilibrium condition for closed and open systems. |
|
Course Outcome |
|
CO1. Understand concept of temperature measurements, work and its interaction, heat and its interaction, different types of thermodynamics systems. [L1, 2, 4] [PO1, 2, 4] CO 2. Understand concept of reversibility and irreversibility, entropy and available energy. [L1, 2, 4] [PO1, 2, 4] CO 3. Evaluate efficiency of heat efficiency of heat engine and coefficient of performance of heat pump & refrigerator. [L1, 2, 4] [PO1, 2, 4] CO 4. Evaluate the properties of pure substance and efficiency of vapor power cycles using pure substance. [L1, 2, 4] [PO1, 2, 4] CO 5. Understand the concept of moist air and its effect on air-conditioning. [L1, 2, 4] [PO1, 2, 4] |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic Thermodynamics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Systems – Zeroth low – First law – Steady flow energy equation – Heat and work transfer in flow and non-flow processes – Second law – Kelvin-Planck statement – Clausius statement – Concept of Entropy Clausius inequality – Entropy change in non-flow processes – Properties of gases and vapours - Introduction to thermoelectricity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Air Standard Cycle and Compressors
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Otto – Diesel – Dual combustion and Brayton cycles – Air standard efficiency – Mean effective pressure – Reciprocating compressors. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Steam and Jet Propulsion
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Properties of steam – Rankine cycle – Steam Nozzles – Simple jet propulsion system – Thrust rocket motor – Specific impulse. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Refrigeration and Air-Conditioning
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Principles of psychometry and refrigeration – Vapour compression – Vapour absorption types – Coefficient of performance – Properties of refrigerants – Basic Principle and types of Air conditioning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat Transfer
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conduction in parallel – Radial and composite wall – Basics of Convective heat transfer – Fundamentals of Radiative heat transfer – Flow through heat exchangers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. “Basic and Applied Thermodynamics” by P.K. Nag, Tata McGraw Hill, 3rd Edi. 2002 2. “Thermodynamics an engineering approach”, by Yunus A. Cenegal and Michael A. Boles. Tata McGraw hill Pub. 2002 3. Nag. P.K., “Basic and applied thermodynamics”, Tata McGraw-Hill, 2007. 4. S. Domkundwar, C.P. Kothandaraman, Anand Domkundwar “A Course in Thermal Engineering, Dhanpat Rai & Co., 2013
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Engineering Thermodynamics. By Rajput, Laxmi Publications pvt ltd., 3rd Edi. 2007. 2. Engineering Thermodynamics by J.B. Jones and G.A.Hawkins, John Wiley and Sons. 3. Thermo Dynamics by S.C.Gupta, Pearson Edu. Pvt. Ltd., 1st Ed. 2005. 4. Holman.J.P., “Thermodynamics”, McGraw-Hill, 2007 5. Arora C.P, “Thermodynamics”, Tata McGraw-Hill, 2003. 6. Radhakrishnan E., “Fundamentals of Engineering Thermodynamics”, Prentice-Hall India, 2005. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU334P - FLUID MECHANICS AND FLUID MACHINES (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
To learn about the application of mass and momentum conservation laws for fluid flows To understand the importance of dimensional analysis To obtain the velocity and pressure variations in various types of simple flows To analyse the flow in water pumps and turbines. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Explain pressure measurement by simple and differential manometer using Pascals law, and explain viscosity, surface tension and capillarity by comprehending the properties of fluids. {L3} CO2: Determine metacentric height using conditions of equilibrium, and explain stream function, potential function and vorticity using basic concepts of inviscid flow. {L3} CO3: Execute derivation of Bernoulli’s equation from Euler’s equation, and explain flow rate measurement using venturimeter, orifice meter, pitot tube, and V and rectangular notches. {L3} CO4: Determine dimensionless groups for fluid flow analysis through Buckingham pi theorem and Rayleigh’s method, and explain direct measurements, analogue methods, flow visualization and components of measuring systems by comprehending concepts of experimental fluid mechanics. {L3} CO5: Calculate pressure drop in pipe flow, and drag and lift coefficients in external flow using experimental relations, and determine Mach number by comprehending basic concepts of compressible flow. {L3} |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction to Fluid Mechanics and Statics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basics: Introduction, Properties of fluids-mass density, weight density, specific volume, specific gravity, viscosity, surface tension, capillarity, vapour pressure, compressibility and bulk modulus. Pascal’s law, Absolute, gauge, atmospheric and vacuum pressures. Pressure measurement by simple, differential manometers and mechanical gauges. Fluid Statics: Buoyancy, center of buoyancy, meta center and meta centric heightits application in shipping, stability of floating bodies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Kinematics and Dynamics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fluid Kinematics: Types of Flow-steady , unsteady, uniform, non-uniform, laminar, turbulent, one, two and three dimensional, compressible, incompressible, rotational, irrotational, stream lines, path lines, streak lines, velocity components, convective and local acceleration, velocity potential, stream function, continuity equation in Cartesian co-ordinates. Fluid Dynamics: Euler’s equation, Integration of Euler’s equation to obtain Bernoulli’s equation, Bernoulli’s theorem, Application of Bernoulli’s theorem such as venturi meter, orifice meter, rectangular and triangular notch, pitot tube, orifices etc., related numericals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major and Minor losses in Pipes
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Major and Minor losses in Pipes: Energy consideration in pipe flow, Loss of Pressure Head due to Fluid Friction, Chezy’s equation, Darcy Weishach formula, major and minor losses in pipes, Moody equation/ diagram. Pipes in series, parallel, equivalent pipe, Related Numericals and simple pipe design problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Flow Over Bodies & Dimensional Analysis
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Flow Over Bodies: Basic concept of Lift and Drag, Types of drag, Co-efficient of drag and lift, streamline body and bluff body, flow around circular bodies and airfoils, Lift and drag on airfoil, Numerical problems. Dimensional Analysis: Need for dimensional analysis, Dimensions and units, Dimensional Homogeneity and dimensionless ratios, methods of dimensional analysis, Rayleigh’s method, Buckingham Pi theorem, Numerical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compressible Flows & CFD
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compressible Flows: Introduction, thermodynamic relations of perfect gases, internal energy and enthalpy, speed of sound, pressure field due to a moving source, basic Equations for one-dimensional flow, stagnation and sonic Properties, normal and oblique shocks. Introduction to CFD: Necessity, limitations, philosophy behind CFD, and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Bansal. R.K, “Fluid Mechanics and Hydraulics Machines”, 9th edition, Laxmi publications {P} Ltd., New Delhi,2017 T2. Yunus A Cengel & John M. Cimbala, Fluid Mechanics, Tata McGraw Hill Edition New Delhi, 2013 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. White. F.M, “Fluid Mechanics”, Tata McGraw-Hill, 8th Edition, New Delhi, 2016 R2. Streeter V.L., Benjamin Wylie, “Fluid Mechanics”, Mc Graw Hill Book Co., New Delhi,1999 R3. Robert W. Fax, Philip J. Pritchard, Alan T. McDonald, “Introduction to Fluid Mechanics”, Wiley India Edition {Wiley Student Edition 8th 2014} R4. Modi P.N, & Seth S.M, “Hydraulics and Fluid Mechanics”, Standard Book House,New Delhi, 14th edition, 2002 R5. Shiv Kumar, “Fluid Mechanics & Fluid Machines: Basic Concepts & Principles”, Ane Books Pvt. Ltd., New Delhi, 2010 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BS351 - ENGINEERING BIOLOGY LABORATORY (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Understanding and application of MATLAB and TINKERCAD for biological analysis which would results in better healthcare and any engineer, irrespective of the parent discipline (mechanical, electrical, civil, computer, electronics, etc.,) can use the disciplinary skills toward designing/improving biological systems. This course is designed to convey the essentials of human physiology.
The course will introduce to the students the various fundamental concepts in MATLAB and TINKERCAD for numerical analysis and circuit design using arduino.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1Perform basic mathematical operation and analysis on biological parameters as BMI, ECG using MATLAB.L4 CO2Perform basic image processing on RGB images pertaining to medical data using MATLABL4 CO3Perform analysis on biological parameters using TinkerCad and design mini projects applicable for healthcare and biosensing.L4 |
Unit-1 |
Teaching Hours:30 |
LIST OF EXPERIMENTS
|
|
1. To familiarize with Matlab Online and getting used to basic functionalities used in Matlab (arrays, matrices, tables, functions) 2. To calculate the Body Mass Index (BMI) of a person and determine under what category the person falls under – underweight, normal, overweight 3. To determine the R peaks in given ECG and to find HRV using Matlab. 4. To determine the R peaks in given ECG and to find HRV using Matlab. 5. To determine the R peaks in given ECG and to find HRV using Matlab. 6. Introduction to Tinkercad and using the various tools available for running a simple program of lighting a LED bulb using Arduino (digital). 7. To design a driver motor in Tinkercad using Arduino and driver motor 8. To design a temperature sensor in Tinkercad using Arduino and TMP36 9. To design and simulate gas sensors using potentiometers, Arduino and servo motors 10. To design and simulate measuring pulse sensors using photodiodes, IR LED and Arduino 11. Preparation of biopolymers (polylactic acid) at home using home-based ingredients. | |
Text Books And Reference Books:
| |
Essential Reading / Recommended Reading
| |
Evaluation Pattern As per university norms | |
EVS321 - ENVIRONMENTAL SCIENCE (2020 Batch) | |
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
Max Marks:0 |
Credits:0 |
Course Objectives/Course Description |
|
To understand the scope and importance of environmental science towards developing a conscious community for environmental issues, both at global and local scale. |
|
Course Outcome |
|
CO1. Explain the components and concept of various ecosystems in the environment (L2, PO7) CO2. Explain the necessity of natural resources management (L2, PO1, PO2 and PO7) CO3.Relate the causes and impacts of environmental pollution (L4, PO1, PO2, and PO3, PO4) CO4.Relate climate change/global atmospheric changes and adaptation (L4,PO7) CO5. Appraise the role of technology and institutional mechanisms for environmental protection (L5, PO8) |
Unit-1 |
Teaching Hours:6 |
Introduction
|
|
Environment and Eco systems – Definition, Scope and importance. Components of environment. Concept and Structure of eco systems. Material Cycles – Nitrogen, Carbon, Sulphur, Phosphorous, Oxygen. Energy Flow and classification of Eco systems. | |
Unit-2 |
Teaching Hours:6 |
Natural Resources
|
|
Classification and importance- Forest, Water, Mineral, Food, Energy. Management of natural resources – challenges and methods. Sustainable development – Goals, Agriculture, Industries | |
Unit-3 |
Teaching Hours:6 |
Environmental Pollution
|
|
Causes and Impacts – Air pollution, Water pollution, Soil Pollution, Noise Pollution, Marine Pollution, Municipal Solid Wastes, Bio Medical and E-Waste. Solid Waste Management | |
Unit-4 |
Teaching Hours:6 |
Climate change/Global Atmospheric Change
|
|
Global Temperature, Greenhouse effect, global energy balance, Global warming potential, International Panel for Climate Change (IPCC) Emission scenarios, Oceans and climate change. Adaptation methods. Green Climate fund. Climate change related planning- small islands and coastal region. Impact on women, children, youths and marginalized communities | |
Unit-5 |
Teaching Hours:6 |
Environmental Protection
|
|
Technology, Modern Tools – GIS and Remote Sensing,. Institutional Mechanisms - Environmental Acts and Regulations, Role of government, Legal aspects. Role of Nongovernmental Organizations (NGOs) , Environmental Education and Entrepreneurship | |
Text Books And Reference Books: T1Kaushik A and Kaushik. C. P, “Perspectives in Environmental Studies”New Age International Publishers, New Delhi, 2018 [Unit: I, II, III and IV] T2Asthana and Asthana, “A text Book of Environmental Studies”, S. Chand, New Delhi, Revised Edition, 2010 [Unit: I, II, III and V] T3Nandini. N, Sunitha. N and Tandon. S, “environmental Studies” , Sapana, Bangalore, June 2019 [Unit: I, II, III and IV] T4R Rajagopalan, “Environmental Studies – From Crisis to Cure”, Oxford, Seventh University Press, 2017, [Unit: I, II, III and IV]
| |
Essential Reading / Recommended Reading R1.Miller. G. T and Spoolman. S. E, “Environmental Science”, CENAGE Learning, New Delhi, 2015 R2.Masters, G andEla, W.P (2015), Introduction to environmental Engineering and Science, 3rd Edition. Pearson., New Delhi, 2013. R3.Raman Sivakumar, “Principals of Environmental Science and Engineering”, Second Edition, Cengage learning Singapore, 2005. R4.P. Meenakshi, “Elements of Environmental Science and Engineering”, Prentice Hall of India Private Limited, New Delhi, 2006. R5.S.M. Prakash, “Environmental Studies”, Elite Publishers Mangalore, 2007 R6.ErachBharucha, “Textbook of Environmental Studies”, for UGC, University press, 2005. R7. Dr. Pratiba Sing, Dr. AnoopSingh and Dr. PiyushMalaviya, “Textbook of Environmental and Ecology”, Acme Learning Pvt. Ltd. New Delhi. | |
Evaluation Pattern No Evaluation | |
HS321 - PROFESSIONAL ETHICS (2020 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:2 |
Max Marks:50 |
Credits:2 |
Course Objectives/Course Description |
|
This paper deals with the various organizational behaviours like learning, perception, motivation and method of managing stress and conflicts and the basic principles of communication. |
|
Course Outcome |
|
CO1: To communicate in an effective manner in an organization. {L1, PO1} CO2: To motivate the team members in an organization. {L3, PO2} CO3: To Study the various motivational theories {L2, PO3} CO4: To study the various methods of learning. {L1, PO2} CO5: To effectively manage the stress and conflicts in an organization.{L1, PO1} |
Unit-1 |
Teaching Hours:8 |
||||||||
Introduction
|
|||||||||
Definition of Organization Behaviour and Historical development, Environmental context (Information Technology and Globalization, Diversity and Ethics, Design and Cultural, Reward Systems). | |||||||||
Unit-1 |
Teaching Hours:8 |
||||||||
The Individual
|
|||||||||
Foundations of individual behaviour, individual differences. Ability. Attitude, Aptitude, interests. Values. | |||||||||
Unit-2 |
Teaching Hours:8 |
||||||||
Perception
|
|||||||||
Definition, Factors influencing perception, attribution theory, selective perception, projection, stereotyping, Halo effect. | |||||||||
Unit-2 |
Teaching Hours:8 |
||||||||
Learning
|
|||||||||
Definition, Theories of Learning, Individual Decision Making, classical conditioning, operant conditioning, social learning theory, continuous and intermittent reinforcement. | |||||||||
Unit-3 |
Teaching Hours:8 |
||||||||
The Groups
|
|||||||||
Definition and classification of groups, Factors affecting group formation, stages of group development, Norms, Hawthorne studies, group processes, group tasks, group decision making. | |||||||||
Unit-3 |
Teaching Hours:8 |
||||||||
Motivation
|
|||||||||
Maslow's Hierarchy of Needs theory, Mc-Gregor's theory X and Y, Hertzberg's motivation Hygiene theory, David Mc-Clelland’s three needs theory, Victor Vroom's expectancy theory of motivation. | |||||||||
Unit-4 |
Teaching Hours:10 |
||||||||
Conflict & Stress management
|
|||||||||
Definition of conflict, functional and dysfunctional conflict, stages of conflict process. Sources of stress, fatigue and its impact on productivity.Job satisfaction, job rotation, enrichment, job enlargement and reengineering work process. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Principle of Communication
|
|||||||||
Useful definitions, communication principles, communication system, role of communication in management, barriers in communication, how to overcome the barriers, rule of effective communication. | |||||||||
Text Books And Reference Books: T1. Organizational Behaviour, Stephen P Robbins, 9th Edition, Pearson Education Publications, ISBN-81-7808-561-5 2002 T2: Organizational Behaviour, Fred Luthans, 9th Edition, Mc Graw Hill International Edition, ISBN-0-07-120412-12002 | |||||||||
Essential Reading / Recommended Reading R1.Organizational Behaviour, Hellriegel, Srocum and Woodman, Thompson Learning, 9th Edition, Prentice Hall India, 2001 R2.Organizational Behaviour, Aswathappa - Himalaya Publishers. 2001 R3.Organizational Behaviour, VSP Rao and others, Konark Publishers.2002 R4.Organizational Behaviour, {Human behaviour at work} 9th Edition, John Newstron/ Keith Davis. 2002 | |||||||||
Evaluation Pattern
| |||||||||
MA331 - MATHEMATICS - III (2020 Batch) | |||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||
Max Marks:100 |
Credits:3 |
||||||||
Course Objectives/Course Description |
|||||||||
To enable the students to find the Fourier series and harmonic analysis of a periodic function, solve the boundary value problems using Fourier series, ordinary differential equations by series solution method and describe functionals and solve variational problems.
|
|||||||||
Course Outcome |
|||||||||
CO1: Develop the trigonometric series as Fourier expansion. {L4 }{PO1, PO2, PO3, PO4} CO2: Classify the nature of partial differential equations and hence solve it by different methods. {L3} {PO1, PO2, PO3} CO3: Solve boundary value problems using Fourier series {L3} {PO1, PO2, PO3} CO4: Solve ordinary differential equation using series solution method {L3} {PO1, PO2, PO3} CO5: Apply Euler’s equation to solve the optimal values of the functional. {L3} {PO1, PO2, PO3} |
Unit-1 |
Teaching Hours:8 |
||||||||||
FOURIER SERIES
|
|||||||||||
Periodic functions, Dirichlet’s conditions, General Fourier series, Odd and even functions, Half range sine and cosine series, Harmonic Analysis. | |||||||||||
Unit-2 |
Teaching Hours:10 |
||||||||||
PARTIAL DIFFERENTIAL EQUATIONS
|
|||||||||||
Formation of PDE, Solution of homogeneous PDE involving derivative with respect to one independent variable only (Both types with given set of conditions), solution of non- homogeneous PDE by direct integration, Solution of Lagrange’s linear PDE of the type P p +Q q= R | |||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||
BOUNDARY VALUE PROBLEMS
|
|||||||||||
Various possible solutions of one-dimensional wave and heat equations, two-dimensional Laplace’s equation by the method of separation of variables. Solution of all these equations with specified boundary conditions. | |||||||||||
Unit-4 |
Teaching Hours:8 |
||||||||||
SERIES SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
|
|||||||||||
Power Series solutions of differential equations, ordinary point, singular point, Frobenius method | |||||||||||
Unit-5 |
Teaching Hours:10 |
||||||||||
CALCULUS OF VARIATIONS
|
|||||||||||
Variation of a function, Variational problems, Euler’s equation and its solution, Standard variation problems including geodesics, minimal surface of revolution, hanging chain and Brachistochrone problems. Functional; functional involving higher order derivatives. | |||||||||||
Text Books And Reference Books: T1. Dr. B. Grewal, “Higher Engineering Mathematics”, 43rd Edition, Khanna Publishers, July 2014. T2. H. K. Das & Rajnish Verma, “Higher Engineering Mathematics”, 20th Edition, S. Chand & Company Ltd., 2012 | |||||||||||
Essential Reading / Recommended Reading R1. Erwin Kreyszig, “Advanced Engineering Mathematics”, 10th Edition, John Wiley & Sons,Inc. 2011. R2. B.V. Ramana, 6th Reprint, “Higher Engineering Mathematics”, Tata-Macgraw Hill, 2008 R3. George F. Simmons and Steven G. Krantz, “Differential Equation, Theory, Technique and Practice”, Tata McGraw – Hill, 2006. R4. M. D. Raisinghania, “Ordinary and Partial Differential Equation”, Chand (S.) & Co. Ltd., India, March 17, 2005 | |||||||||||
Evaluation Pattern
| |||||||||||
ME333P - STRENGTH OF MATERIALS (2020 Batch) | |||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||
Max Marks:100 |
Credits:4 |
||||||||||
Course Objectives/Course Description |
|||||||||||
To study the behaviour of material under different loading conditions, and study of various stress, strain and deformation on a material without undergoing failure or plastic deformation. |
|||||||||||
Course Outcome |
|||||||||||
CO1: Demonstrate an understanding of stress-strain generated with in ductile and brittle material for simple and compound loading conditions. {L1, L2} {PO1, PO2} CO2: Determine the shear force, shear stress, bending moment and bending stress distribution for various beam with different loading conditions. {L1, L2, L3} {PO1, PO2, PO3} CO3: Finding the maximum deflection of beam by double integration and Macaulay’s method. {L1, L2, L4} {PO1, PO2, PO4} CO4: Understand the solid and hollow shaft behaviour subjected to pure torsion. {L1, L2, L3} {PO1, PO2, PO3} CO5: Illustrate the knowledge of calculating deformation in thick, thin cylinder and spherical shell. {L1, L2} {PO1, PO2} |
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Compound Stresses and Strains
|
||||||||||||||||||||||||||||||||||||
Two-dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr’s circle of stress. Activity: Determination of Plane stress 2D element using Matlab. | ||||||||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Simple Stresses and Strains
|
||||||||||||||||||||||||||||||||||||
Deformation in Solids, Hooke’s law, Stress Strain curve for ductile and brittle materials,Principle of super position, Shear stresses, Temperature Stress, Elastic constants and their relations - Volumetric, linear and shear strains. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Bending moment and Shear Force Diagrams
|
||||||||||||||||||||||||||||||||||||
Bending moment (BM) and shear force (SF) diagrams for cantilever, simply supported and over hanging beams for point load (PL), uniformly distributed load (UDL), Uniformly varying load (UVL) and Couple. | ||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Theory of bending stresses
|
||||||||||||||||||||||||||||||||||||
Assumptions in the simple bending theory, derivation of formula: its application to beams of rectangular, circular and channel sections, Composite beams, bending and shear stresses in composite beams. | ||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Deflection of Beams
|
||||||||||||||||||||||||||||||||||||
Relationship between moment, slope and deflection, Double integration method, Macaulay’s method. Use of these methods to calculate slope and deflection for cantilever and simply supported beams subjected to point load, UDL, UVL and Couple. Activity: Determination of Neutral axis for any regular or composite beam section using Matlab or Excel. | ||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Simple Torsional Theory
|
||||||||||||||||||||||||||||||||||||
Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity, Combined torsion. Analysis of close-coiled-helical springs. Activity: Determination of Torsion in shaft using Matlab. | ||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
|||||||||||||||||||||||||||||||||||
Thick and Thin Cylinders
|
||||||||||||||||||||||||||||||||||||
Axial and hoop stresses in cylinders subjected to internal pressure, deformation of thick and thin cylinders, deformation in spherical shells subjected to internal pressure. | ||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Egor P. Popov, Engineering Mechanics of Solids, Prentice Hall of India, New Delhi, 2001. T2. R. Subramanian, Strength of Materials, Oxford University Press, 2007. T3. Ferdinand P. Been, Russel Johnson Jr and John J. Dewole, Mechanics of Materials, Tata Mc GrawHill Publishing Co. Ltd., New Delhi 2005. T4. R.C. Hibbeler, "Mechanics of materials", 9th Edition, Printice hall. pearson edu., 2014. T5. James. M. Gere; Stephe Timoshenko, "Mechanics of materials",2nd Edition CBS Publishers, 2016. T6. Ferdinand P Beer; E. Russel Johnson; John T Dewolf; David F Mazurek; Sanjeev. Sanghi,"Mechanics of materials", Tata mc-grawhill- 2013. | ||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. S.S. Rattan, "Strength of Materials", 3rd Edition, Tata McGraw Hill, 2011. R2. S.S. Bhavikatti, “Strength of Materials", 4th Edition, Vikas publications House Pvt. Ltd., 2013. R3. K.V. Rao, G.C. Raju, “Mechanics of Materials", First Edition, 2007 R4. Egor. P. Popov, "Engineering Mechanics of Solids", Pearson Edu. India, 2008. R5. W.A. Nash, Schaum's Outlines Strength of Materials, Tata Mcgraw-Hill Publishing Company 2010. R6 R.K. Rajput “Strength of Materials”, S.Chand & co Ltd. New Delhi, 2015 R7 R.KBansal, “Strength of Materials”, Lakshmi Publication {P} Ltd, New Delhi, 2009. | ||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| ||||||||||||||||||||||||||||||||||||
MIA351 - FUNDAMENTALS OF DESIGN (2020 Batch) | ||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:90 |
No of Lecture Hours/Week:6 |
|||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:04 |
|||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
||||||||||||||||||||||||||||||||||||
The studio intends to contextualize the student towards aesthetical approach and sensitize them towards local and heterogeneous culture of ours. Today, the biggest challenge is lying in the areas of aesthetical thinking and process-based techniques, where we try to enhance aesthetic sense, creativity, responsive and reflective ecology in which they live and connect. They connect their creativity and aesthetical sensibility to local knowledge and culture of their own environment. Also, there are things to learn and adapt from the diversity of craftsmanship and knowledge system.
|
||||||||||||||||||||||||||||||||||||
Course Outcome |
||||||||||||||||||||||||||||||||||||
CO1: To have a comprehensive understanding of architectural drawing techniques and pictorial presentation. Level: Basic CO2: Ability to sensitively observe and record various aspects of the immediate environment including human relationships, visual language, aesthetic characteristics and space, elements of nature, etc. Level: Basic CO3: Ability to achieve skills of visualization and communication, through different mediums and processes. Level: Basic |
Unit-1 |
Teaching Hours:20 |
||||||||||||||||||
Familiarizing surrounding
|
|||||||||||||||||||
Observing, experiencing, analyzing the manmade environment and organic environment. To create awareness of human abilities like perception, intuition, Identification, and observation, enjoying our senses through a nature walk, (by seeing, hearing, touching, smelling, and tasting) | |||||||||||||||||||
Unit-2 |
Teaching Hours:20 |
||||||||||||||||||
Principles of art & drawing
|
|||||||||||||||||||
To understand basic principles of art and drawing as an extension of seeing and a tool to create awareness of different visualization techniques. | |||||||||||||||||||
Unit-3 |
Teaching Hours:20 |
||||||||||||||||||
Elements of Design & theory of visual perception
|
|||||||||||||||||||
| |||||||||||||||||||
Unit-4 |
Teaching Hours:30 |
||||||||||||||||||
Pictorial Projections, Sciography & Rendering
|
|||||||||||||||||||
| |||||||||||||||||||
Text Books And Reference Books: T1. Cari LaraSvensan and William Ezara Street, Engineering Graphics. T2. Bhatt, N. D., Engineering Drawing, Charotar Publishing House Pvt. Ltd T3. Venugopal, K., Engineering Drawing and Graphics, New Age International Publishers. T4. S. Rajaraman, Practical Solid Geometry. | |||||||||||||||||||
Essential Reading / Recommended Reading R1. Francis D. K. Ching, ‘Drawing, Space, Form, Expression’. R2. Alexander W. White, ‘The Elements of Graphic Design, Allworth Press R3. Alexander W. White, ‘The Elements of Graphic Design, Allworth Press; 1 edition (Nov 1, 2002) | |||||||||||||||||||
Evaluation Pattern The Evaluation pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). CONTINUOUS INTERNAL ASSESSMENT (CIA): 50 Marks END SEMESTER EXAMINATION (ESE, VIVA-VOCE): 50 Marks TOTAL:100 Marks Note: For this course, a minimum of 50% marks in CIA is required to be eligible for VIVA-VOCE which is conducted as ESE. | |||||||||||||||||||
MICS331P - INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS (2020 Batch) | |||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||
|
|||||||||||||||||||
Course Outcome |
|||||||||||||||||||
Sl NO DESCRIPTION REVISED BLOOM’S TAXONOMY (RBT)LEVEL 1. Explain the basic concepts of data structures and solve the time complexity of the algorithm L3 2. Experiment with various operations on Linear Data structures L3 3. Examine the Structures and Operations of Trees and Heaps Data Structures L4 4 Compare various given sorting techniques with respect to time complexity L4 5 Choose various shortest path algorithms to determine the minimum spanning path for the given graphs L5 |
Unit-1 |
Teaching Hours:14 |
INTRODUCTION
|
|
Definition- Classification of data structures: primitive and non-primitive- Operations on data structures- Algorithm Analysis. LAB Programs: 1a. Sample C Programs 1b. To determine the time complexity of a given logic. | |
Unit-2 |
Teaching Hours:17 |
LISTS, STACKS AND QUEUES
|
|
Abstract Data Type (ADT) – The List ADT – The Stack ADT: Definition,Array representation of stack, Operations on stack: Infix, prefix and postfix notations Conversion of an arithmetic Expression from Infix to postfix. Applications of stacks. The Queue ADT: Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (de-queue) priority queue, operations on all types of Queues LAB Programs: 2. Implement the applications Stack ADT. 3. Implement the applications for Queue ADT. 4.Operations on stack[e.g.: infix to postfix, evaluation of postfix] | |
Unit-3 |
Teaching Hours:16 |
TREES
|
|
Preliminaries – Binary Trees – The Search Tree ADT – Binary Search Trees – AVL Trees – Tree Traversals – Hashing – General Idea – Hash Function – Separate Chaining – Open Addressing –Linear Probing – Priority Queues (Heaps) – Model – Simple implementations – Binary Heap. LAB PROGRAMS: 5. Search Tree ADT - Binary Search Tree | |
Unit-4 |
Teaching Hours:14 |
SORTING
|
|
Preliminaries – Insertion Sort – Shell sort – Heap sort – Merge sort – Quicksort – External Sorting. LAB PROGRAMS 6. Heap Sort. 7. Quick Sort. 8.Applications of Probability and Queuing Theory Problems to be implemented using data structures. | |
Unit-5 |
Teaching Hours:14 |
GRAPHS
|
|
Definitions – Topological Sort – Shortest-Path Algorithms – Unweighted Shortest Paths – Dijkstra‘s Algorithm – Minimum Spanning Tree – Prim‘s Algorithm – Applications of Depth- First Search – Undirected Graphs – Bi-connectivity – Introduction to NP-Completeness-case study LAB PROGRAMS 9. Implementing a Hash function/Hashing Mechanism. 10. Implementing any of the shortest path algorithms.
| |
Text Books And Reference Books: TEXT BOOK 1.Mark Allen Weiss , “Data Structures and Algorithm Analysis in C”, 2nd Edition, Addison-Wesley, 1997 | |
Essential Reading / Recommended Reading 1. Michael T. Goodrich, Roberto Tamassia and Michael H. Goldwasser , ―Data Structures and Algorithms in Python ‖, First Edition, John Wiley & Sons, Incorporated, 2013.ISBN1118476735, 9781118476734 | |
Evaluation Pattern Components of the CIA CIA I : Assignment/MCQ and Continuous Assessment : 10 marks CIA II : Mid Semester Examination (Theory) : 10 marks CIA III : Closed Book Test/Mini Project and Continuous Assessment: 10 marks Lab marks :35 marks Attendance : 05 marks End Semester Examination(ESE) : 30% (30 marks out of 100 marks) Total: 100 marks | |
MIMBA331 - PRINCIPLES OF MANAGEMENT (2020 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course Description: This is offered as a core course in first trimester. This course will provide a general introduction to management principles and theories, and a brief outline on history and development of management thought. Course Objectives: This course describes the steps necessary to understand an organisation that are aligned with business objectives and provides an insight to address a range of challenges that every manager encounters. It aims to prepare students for an exciting challenging and rewarding managerial career through case studies on ‘Global Perspective’. |
|
Course Outcome |
|
Course Learning Outcomes: On having completed this course students should be able to: CLO1 Understand different management approaches CLO2 Demonstrate planning techniques CLO3 Able to work in dynamic teams within organizations CLO4 Analyze different processes in staffing and controlling |
Unit-1 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Nature, Purpose and Evolution of Management Thought
|
|||||||||||||||||||||||||||||||||||||||||
Meaning; Scope; Managerial levels and skills; Managerial Roles; Management: Science, Art or Profession; Universality of Management. Ancient roots of management theory; Classical schools of management thought; Behavioral School, Quantitative School; Systems Approach, Contingency Approach; Contemporary Management thinkers & their contribution. Ancient Indian Management systems & practices. Comparative study of global management systems & practices. Social responsibility of managers, Managerial Ethics. Evolution of Management: Teaching management through Indian Mythology (Videos of Devdutt Pattanaik, Self-learning mode)
| |||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Planning
|
|||||||||||||||||||||||||||||||||||||||||
Types of Plans; Steps in Planning Process; Strategies, level of Strategies, Policies and Planning; Decision making, Process of Decision Making, Techniques in Decision Making, Forecasting & Management by Objectives (MBO). Planning: Emerald Case and Projects of Events | |||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Organizing
|
|||||||||||||||||||||||||||||||||||||||||
Organizational structure and design; types of organizational structures; Span of control, authority, delegation, decentralization and reengineering. Social responsibility of managers, Managerial Ethics. Organizing: Holacracy form of organization structure | |||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Staffing
|
|||||||||||||||||||||||||||||||||||||||||
Human resource planning, Recruitment, selection, training & development, performance appraisal, managing change, compensation and employee welfare. Motivation: Concept, Forms of employee motivation, Need for motivation, Theories of motivation, Stress Management Staffing: Stress Management & Career path, Emerald Case | |||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Leading and Controlling
|
|||||||||||||||||||||||||||||||||||||||||
Leadership concept, leadership Styles, leadership theories, leadership communication. Nature of organizational control; control process; Methods and techniques of control; Designing control systems, Quality Management Leading: Article on Styles of leadership by Daniel Goleman Controlling: Projects of Events
| |||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: Koontz, H. & Heinz, W. (2013). Management (13th Edition). Tata McGraw Hill Publications.
| |||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Recommended Reading 1. Daft, R. L. (2013). The new era of management (10th Edition). Cengage Publications. 2. Prasad, L.M., Principles and practices of management. New Delhi: Sultan Chand & Sons. 3. Stoner, J.F., Freeman, E. R., & Gilbert, D.R. (2013). Management (6th Edition). Pearson Publications. 4. Joseph L Massie, Essentials of Management. Prentice-Hall India, New York. | |||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||
MIME331 - SENSORS AND DATA ACQUISITION (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:45 |
||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||
Course objectives:
|
|||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||
Course outcomes: CO1. Summarize the working and construction of sensors measuring various physical CO2. Design suitable signal conditioning and filter circuits for sensors. CO3. Outline operations of various data acquisition and transmission systems. CO4. Distinguish smart sensors from normal sensors by their operation and construction. C05. Classify various sensing methods used in condition monitoring |
Unit-1 |
Teaching Hours:9 |
SENSORS AND TRANSDUCERS
|
|
Sensors and classifications – Characteristics environmental parameters – Selectionand specification of sensors – Introduction to Acoustics and acoustic sensors- Ultrasonicsensor- Types and working of Microphones and Hydrophones – Sound level meter, Humidity | |
Unit-2 |
Teaching Hours:9 |
SMART SENSORS
|
|
Introduction - primary sensors, characteristic, Information coding / processing, Datacommunication - Recent trends in sensors and Technology - Film sensor, MEMS and NanoSensors. | |
Unit-3 |
Teaching Hours:9 |
SIGNAL CONDITIONING
|
|
Amplification, Filtering – Level conversion – Linearization - Buffering – Sample andHold circuit – Quantization – Multiplexer / Demultiplexer – Analog to Digital converter –Digital to Analog converter- I/P and P/I converter - Instrumentation Amplifier-V/F and F/V converter. | |
Unit-4 |
Teaching Hours:9 |
DATA ACQUISITION
|
|
Data Acquisition conversion-General configuration-single channel and multichanneldata acquisition – Digital filtering – Data Logging – Data conversion – Introduction to DigitalTransmission system. | |
Unit-5 |
Teaching Hours:9 |
SENSORS FOR CONDITION MONITORING
|
|
Introduction to condition monitoring - Non destructive testing (vs) condition | |
Text Books And Reference Books: T1. Patranabis. D, “Sensors and Transducers”, PHI, New Delhi, 2ndEdition, 2003. T2. Ernest O. Doebelin, “Measurement Systems – Applications and Design”, TataMcGraw-Hill, 2009. T3. David G. Alciatore and Michael B. Histand, “Introduction to Mechatronics andMeasurement systems”, Tata McGraw-Hill, 2nd Edition, 2008. T4. John Turner and Martyn Hill, Instrumentation for Engineers and Scientists, OxfordScience Publications, 1999. | |
Essential Reading / Recommended Reading R1. Cornelius Scheffer and PareshGirdhar “Practical Machinery Vibration Analysis andPredictive Maintenance” Elsevier, 2004. R2. A.K. Sawney and PuneetSawney, “A Course in Mechanical Measurements andInstrumentation and Control”, 12th edition, DhanpatRai& Co, New Delhi, 2001. R3.Mohamed Gad-el-Hak, “The MEMS handbook”, Interpharm/CRC. 2001 R4. Dr.Ing.B.V.A. RAO, “Monograph on Acoustics & Noise control”, NDRF, TheInstitution of Engineers (India), 2013. | |
Evaluation Pattern CIA Marks: 50 ESE Marks: 50
| |
MIPSY331 - UNDERSTANDING HUMAN BEHAVIOR (2020 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
This course focuses on the fundamentals of psychology. It is an introductory paper that gives an overall understanding about the human behavior. It will provide students with an introduction to the key concepts, perspectives, theories, and sub-fields on various basic processes underlying human behavior.
|
|
Course Outcome |
|
After the completion of this course students will be able to: |
Unit-1 |
Teaching Hours:12 |
||||||||||||||||||||||||||
Sensation
|
|||||||||||||||||||||||||||
Definition, Characteristics of Sensory modalities: Absolute and difference threshold; Signal detection theory; sensory coding; Vision, Audition, Other Senses. Assessment of Perception and Sensation Practicum: Aesthesiometer | |||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:12 |
||||||||||||||||||||||||||
Perception
|
|||||||||||||||||||||||||||
Definition, Understanding perception, Gestalt laws of organization, Illusions and Perceptual constancy; Various sensory modalities; Extrasensory perception. Practicum: Muller-Lyer Illusion | |||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:12 |
||||||||||||||||||||||||||
Learning and Memory
|
|||||||||||||||||||||||||||
Learning:Definition, Classical conditioning, Instrumental conditioning, learning and cognition; Memory: Types of Memory; Sensory memory, working memory, Long term memory, implicit memory, Constructive memory, improving memory; Assessment of memory. Practicum: Memory drum | |||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:12 |
||||||||||||||||||||||||||
Individual Differences
|
|||||||||||||||||||||||||||
Concepts and nature of Individual differences; Nature vs. nurture; Gender difference in cognitive processes and social behavior; Intelligence: Definition, Contemporary theories of intelligence; Tests of intelligence; Emotional, Social and Spiritual intelligence. Practicum: Bhatia’s Battery of Performance | |||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:12 |
||||||||||||||||||||||||||
Personality
|
|||||||||||||||||||||||||||
Definition, Type and trait theories of personality, Type A, B & C. Psychoanalytic - Freudian perspective; Types of personality assessment. Practicum: NEO-FFI 3 | |||||||||||||||||||||||||||
Text Books And Reference Books: Baron, R. A. (2001). Psychology. New Delhi: Pearson Education India. Rathus, S. A. (2017). Introductory Psychology, 5thEd. Belmont, CA: Wadsworth. Nolen-Hoeksema, S., Fredrickson, B.L. & Loftus, G.R. (2014). Atkinson & Hilgard'sIntroduction to Psychology.16th Ed. United Kingdom: Cengage Learning.
| |||||||||||||||||||||||||||
Essential Reading / Recommended Reading Feldman, R. S. (2011). Understanding Psychology. New Delhi: Tata McGraw Hill. Morgan, C. T., King, R. A., & Schopler, J. (2004). Introduction to Psychology. New Delhi: Tata McGraw Hill. Kalat, J. W. (2016). Understanding Psychology. New York: Cengage Learning | |||||||||||||||||||||||||||
Evaluation Pattern CIA Evaluation pattern
Mid Semester Examination
End Semester Examination
| |||||||||||||||||||||||||||
AU431 - AUTOMOTIVE TRANSMISSION (2020 Batch) | |||||||||||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||||||||||
Max Marks:50 |
Credits:2 |
||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||
The course aims to impart basic skills and understanding of automobile transmission systems basic components their working principle, classification and performance characteristics. |
|||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||
CO1: To explain various types of clutch and gear box systems present in the vehicle.[L1, 2] [PO1, 2, 4, 5] CO2: To do demonstrate on quantity of energy conversion of Fluid Coupling and torque converters.[L1, 2] [PO1, 2, 4, 5] CO3: To explore current trend torque converters.[L1, 2] [PO1, 2, 4, 5] CO4: To describe different types of transmission systems.[L1, 2] [PO1, 2, 4, 5] CO5: To explore various hydrostatic drives and its limitation in a vehicle.[L1, 2] [PO1, 2, 4, 5] |
Unit-1 |
Teaching Hours:6 |
||||||||||||||||
Clutch and Gear Box
|
|||||||||||||||||
Role of Clutch in driving system - Requirements of transmission system – Design aspects - Construction and working principle of different types of clutches - Designing the torque capacity, axial force of single plate clutch and typical problems involving the above principles. Objective of the Gear Box - Setting top, bottom and intermediate gear ratios, Problems involving these derivations - Performance characteristics at different speeds - Construction and operations of Sliding-mesh gear box - Constant-mesh gear box - Synchro-mesh gear box - Planetary gear box - Problems on above aspects
| |||||||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||||||
Fluid coupling
|
|||||||||||||||||
Fluid coupling - Principle of operation - Construction details - Torque capacity - Performance characteristics - Problems on design - Reduction of drag torque Torque converter - Principle of operation - Constructional details – Performance characteristics, Converter coupling – Construction - Free wheel – Characteristic performance
| |||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||
Multi-stage hydro-kinetic torque converter
|
|||||||||||||||||
Multi-stage hydro-kinetic torque converter - Poly-phase hydro-kinetic torque converter - Construction, working and performance | |||||||||||||||||
Unit-4 |
Teaching Hours:6 |
||||||||||||||||
Principle of working of epi-cyclic gear train
|
|||||||||||||||||
Principle of working of epi-cyclic gear train - Construction and working principle of Ford-T model gear box - Wilson gear box- construction, working and derivation of gear ratios - Cotal electromagnetic transmission - Automatic over-drive - Hydraulic control system for automatic transmission. Chevrolet automatic transmission - Turbo glide transmission - Power glide transmission - Toyota “ECT-i” [Automatic transmission with intelligent electronic control systems] - Mercedes Benz automatic transmission - Hydraulic clutch actuation system for automatic transmission | |||||||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||||||
Hydrostatic drive
|
|||||||||||||||||
Hydrostatic drive – principle, types, advantages, limitations - Comparison of hydrostatic drive with hydrodynamic drive - Construction and working of typical Janny hydrostatic drive. Lay-out of elective drive - Principle of early and modified ward Leonard control systems – advantages, limitations, performance characteristics | |||||||||||||||||
Text Books And Reference Books: 1. “Automotive Transmissions: Fundamentals, Selection, Design and Application”, 2nd Edition, Springer, 2011. | |||||||||||||||||
Essential Reading / Recommended Reading 1. Heldt P. M, “Torque converters”, Chilton Book Co., 1992. 2. Newton Steeds & Garrot, “Motor Vehicles”, SAE International and Butterworth Heinemann, 2001. 3. CDX Automotive, “Fundamentals of Automotive Technology: Principles and Practice”, Jones & Bartlett Publishers, 2013. 4. Judge A.W, “Modern Transmission Systems”, Chapman and Hall Ltd., 1990. 5. SAE Transactions 900550 & 930910. 6. Crouse W.H, Anglin D.L, “Automotive Transmission and Power Trains construction”, McGraw Hill, 1976.
| |||||||||||||||||
Evaluation Pattern
| |||||||||||||||||
AU432P - AUTOMOTIVE MATERIALS AND MANUFACTURING TECHNOLOGY (2020 Batch) | |||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||
The objective of the course is to provide the basic knowledge needed to explore the application of materials science and engineering in automobile field. 1. To develop the knowledge of the properties of materials and its alloys 2. To introduce the modern materials and alloys. 3. To develop knowledge in recent trends in manufacturing techniques of automobile components. |
|||||||||||||||||
Course Outcome |
|||||||||||||||||
CO1: Describe the types of Ferrous & Non-Ferrous alloys [L1, 2] [PO1, 2, 4, 5] CO2: Discuss the Mechanical surface treatment and coatings done on materials [L2, 4] [PO1, 2, 4, 5] CO3: Describe the need for modern materials and its alloys. [L2, 4] [PO1, 2, 4, 5] CO4: Discuss the material used to manufacture Engine and describe the manufacturing process [L2, 4] [PO1, 2, 4, 5] CO5: Discuss and explain the trends in manufacturing Automobile components [L2, 4] [PO1, 2, 4, 5] |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ferrous & Non-Ferrous Automotive Materials
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Classification of Engineering Materials, Properties of Materials, History, Factors Contributing Sustainable Mobility, Importance of light weight Material, Alloys, Phase Diagram, Iron-Carbon Equilibrium diagrams, Micro Structures & their properties. Light Weight material: Aluminum, Magnesium Alloys, potential in Automotive Light Weighting (wrt Ashby Diagram), Magnesium and Mg Alloys Designation, Manufacturing Methods, Aluminum & its wide application in Automotive, Wrought and Cast Al Alloy Designation. Steels, Classification of steels, Carbon steels: Low, Medium & High; Alloy Steels: Low and High Alloy Steels, High Strength low Alloy(HSLA) Steels, Alloying Elements in Steel, Effects of Alloying Elements on steels. Cast Iron: Basic Metallurgy of Cast Iron, Classification of Cast Iron, Gray CI, Ductile Iron, Malleable Iron, Compacted Graphite Irons. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Surface Engineering
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Introduction, Groups of Methods, Functions and Purpose of a Product, Mechanical Surface Treatment: Surface Cleaning, Finishing Processes, Mass Finishing & Short Pining. Heat Treatment: Grain Size, Micro-Structure, Hardenability, Fe-C Phase Diagram, Types of heat treatment, Normalizing, annealing, Spherodising, Quenching and Tempering, Carbonizing, Nitriding, Carbo- Niriding, Nitro- Carbonizing, Laser Surface hardening. Coating: Organic & Inorganic Coating, Powder Coating, Hot Dip Coating, Electroplating, Electroless coating, Metallizing of Plastics and Ceramics, Physical vapor Deposition, Chemical vapor Deposition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Advances in Automotive Materials
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Passenger Cars Body Materials: Evolutions in Advance Steels, Current and Future Trends, DP Steel, CP Steel, MART Steel, FB Steel, HF Steel, TRIP Steel, TWIP Steel, AHSS: Nano Steel, Usage and Automotive Applications. Forging Grades Steel, High Temperature Super Alloy, SMART Materials | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Engine materials and manufacturing
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Requirements & Trends, New & Typical Materials, Selection Process, Cylinder Block & Head, Cylinder Head Gasket, Valve, Seats & guides, Piston & Pin, Piston Ring & Liner, Con Rod, Crankshaft & Bearings, Turbocharger, After-treatment Devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Recent Trends in manufacturing Auto components
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Special processing techniques-Hydroforming-stretch forming-Recent developments in auto body panel forming-squeeze casting of pistons, Aluminium composite brake rotors-sinter diffusion bonded idler sprocket-Gas injection moulding of window channel-Cast con process for auto parts-computer modeling and simulation-material characterestics and failure analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1. Callister W.D. (2006) “Material Science and Engineering- An introduction”, Wiley –Eastern 2. Flinn R. A. and Trojan P. K., (1999)”Engineering Materials and their Applications”, Jaico. 3. Arthur C.Reardon (2011) “Metallurgy for the Non- Metallurgist”, ASM International Publication. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading 1. Kenneth Budinski – (1988) “Surface Engineering for wear resistance", Prentice Hall. 2. Avner S.H., (2006) “Introduction to physical metallurgy” –Tata McGraw Hill. 3. Haslehurst.S.E., " Manufacturing Technology ", ELBS, London, 1990. 4. Rusinoff, " Forging and Forming of metals ", D.B. Taraporevala Son & Co. Pvt Ltd., Mumbai,1995. . Sabroff.A.M. & Others, " Forging Materials & Processes ", Reinhold Book Corporation, New York, 5. Upton, " Pressure Die Casting ", pergamon Press, 1985. High Velocity " Forming of Metals ", ASTME, prentice Hall of India (P) Ltd., New Delhi, 1990. 6. ASM Handbook Volume 4 & 4A: Heat Treatment 7. ASM Handbook Volume 5: Surface Engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU433P - AUTOMOTIVE ELECTRICAL AND ELECTRONIC SYSTEMS (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
•To make the students understand the working principle of transducers and sensors. •To understand various types of lighting system and charging system. •To understand various types of sensors used in engine and application of each sensor. •To have a broad knowledge about electrical and electronic components in the vehicle.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: To explain various electronic systems present in the vehicle. [L1, 2, 3] [PO1, 2, 3] CO2: To do demonstrate on quantity of energy conversion through calculations for actual processes [L1, 2, 3] [PO1, 2, 3] CO3: To explore current trend automotive electronic engine management. [L1, 2, 3] [PO1, 2, 3] CO4: To describe electronic engine management system [L1, 2, 3] [PO1, 2, 3] CO5: To explore various sensors in a vehicle. [L1, 2, 3] [PO1, 2, 3] |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Batteries and Accessories
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Principle and construction of lead acid battery, characteristics of battery, rating capacity and efficiency of batteries, various tests on batteries, maintenance and charging. Standard Battery rating for various vehicles, other battery types and overview of battery management system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Starting System
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Condition at starting, behaviour of starter during starting, series motor and its characteristics, principle and construction of starter motor, working of different starter drive units, care and maintenances of starter motor, starter switches. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Charging System and Lighting
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Generation of direct current, shunt generator characteristics, armature reaction, third brush regulation, cut-out. Voltage and current regulators, compensated voltage regulator, alternators principle and constructional aspects and bridge rectifiers, new developments. Lighting system: insulated and earth return system, details of head light and side light, LED lighting system, head light dazzling and preventive methods – Horn, and wiper system, advances in lighting system (adaptive front lighting system – AFLS).
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fundamentals of Automotive Electronics
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Current trends in automotive electronic engine management system, electromagnetic interference /electromagnetic compatibility (EMI/EMC), electronic dashboard instruments, on board diagnostic system (OBD), security and warning system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sensors and Actuators
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.Case study of any one of the automotive sensor-based application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Allan Bonnick, “Automotive Computer Controlled Systems”, ISBN1138177172 2016. T2. Tom Weather Jr and Cland C.Hunter, “Automotive Computers and Control System”, Prentice Hall Inc., New Jersey. T3. Young A. P & Griffiths L, “Automobile Electrical and Electronic Equipments”, English Languages Book Society & New Press, 1990.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Santini Al, “Automotive Electricity and Electronics”, Cengage Learning, 2012.. R2. Tom Denton, “Automotive Electrical and Electronic System”, SAE International, 2004. R3. William B. Ribbens, “Understanding Automotive Electronics”, 6th Edition, Newnes, 2003. R4. BOSCH, “Automotive Handbook”, 8th Edition, BENTLEY ROBERT Incorporated, 2011. R5. Norm Chapman, “Principles of Electricity and electronics for the Automotive Technician”, Delmar Cengage Learning,2nd edition 2009. R6. Judge A.W, “Modern Electrical Equipment of Automobiles”, Chapman & Hall, London, 1992. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU434P - AUTOMOTIVE ENGINES (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
•To make students familiar with engine components. •To understand about carburetion, and types of petrol injection systems. •To introduce combustion inside the engine. •To introduce students to lubrication and cooling systems, supercharging turbocharging and scavenging. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO 1 : Understand engine construction based on mechanism of working. [L1, 2, 3] [PO1, 2, 3] CO2: Summarize stoichiometric air-fuel ratio by using stoichiometric combustion equation for fuels. [L1, 2, 4] [PO1, 3, 4] CO 3 : Understand the stages of combustion in S.I engine to reduce knocking. [L1, 2, 3] [PO1, 2, 6] CO 4 : Explain the importance of air swirl, turbulence and tumble in combustion chamber to increase the rate of combustion. [L2, 3] [PO1, 2, 4] CO 5 : Understand and apply formula to know the various engine performance parameters with respect to different engine dimensions. [L2, 4] [PO1, 2, 4, 5] |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Engine Construction and Operation
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Four stroke SI and CI engines - Working principle - function, materials, constructional details of engine components - Valve timing diagram - Firing order and its significance – relative merits and demerits of SI and CI engines Two stroke engine construction and operation. Comparison of four-stroke and two-stroke engine operation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion and Fuels
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion fundamentals, Conversion of gravimetric to volumetric analysis -Determination of theoretical minimum quantity of air for complete combustion -Determination of air fuel ratio for a given fuel. Properties and rating of fuels (petrol and diesel), chemical energy of fuels, reaction equations, combustion temperature, combustion chart. Combustion in premixed and diffusion flames - Combustion process in IC engines.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Alternate fuels:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CNG, LPG, Alcohols, Hydrogen and Vegetable oil as a fuel:-modification required to use in engines. -performance and emission characteristics.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion in SI Engines
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stages of combustion in SI engine- Flame propagation - Flame velocity and area of flame front - Rate of pressure rise - Cycle to cycle variation – Abnormal combustion - Theories of detonation - Effect of engine operating variables on combustion. Combustion chambers - types, factors controlling combustion chamber design, Emissions from SI engine, SI emission reduction techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Combustion in CI Engines
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Importance of air motion - Swirl, squish and turbulence - Swirl ratio. Fuel air mixing - Stages of combustion - Delay period - Factors affecting delay period, Knock in CI engines - methods of controlling diesel knock. CI engine combustion chambers - Combustion chamber design objectives - open and divided. Induction swirl, turbulent combustion chambers. - Air cell chamber - M Combustion chamber. Emissions from CI engine, CI emission reduction techniques | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other Technologies:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic Purpose, Construction, and Working of: a.Turbocharger b.Supercharger c.Catalytic converter d.Exhaust Gas Recirculation e.Selective Catalytic Reduction | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Engine Performance
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Measurement and calculation techniques of performance parameters - BP, FP, IP, Torque specific fuel consumption, Specific Energy consumption, volumetric efficiency, thermal efficiency, mechanical efficiency, Engine specific weight, and heat balance, Testing of engines – different methods, Emission measurement techniques, Numerical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: 1.Ganesan V, “Internal combustion engines”, 4th edition, Tata McGraw Hill Education, 2012 2.Rajput R. K, “A textbook of Internal Combustion Engines”, 3rd edition, Laxmi Publications (P) Ltd, 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading •John. B, Heywood, “Internal Combustion Engine Fundamentals”, McGraw Hill Education; 1 edition (17 August 2011) •Ramalingam K. K, “Internal Combustion Engines”, Second Edition, Scitech Publications. •Sharma S. P, Chandramohan, “Fuels and Combustion”, Tata McGraw Hill Publishing Co, 1987. •Mathur and Sharma, “A course on Internal combustion Engines”, DhanpatRai& Sons, 1998. •Edward F, Obert, “Internal Combustion Engines and Air Pollution”, Intext Education Publishers. •Yunus A Cengel & John M. Cimbala, Fluid Mechanics, Tata McGraw Hill Edition, New Delhi, 2006 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU435 - KINEMATICS AND THEORY OF MACHINES (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.To understand the kinematics and rigid- body dynamics of kinematically driven machine components. 2.To understand the motion of linked mechanisms in terms of the displacement, velocity and acceleration at any point in a rigid link. 3.To be able to design some linkage mechanisms and cam systems to generate specified output motion. 4.To understand the kinematics of gear trains.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: Summarize the fundamentals of kinematics and Planar mechanisms. {L1} {PO1} CO2:Analyse velocity and acceleration parameters in various four bar mechanisms using instantaneous centre method and relative velocity method. {L2, L3} {PO2} CO3:Develop the displacement diagram for a required output and design cam profiles for inline and offset followers. {L4}{PO1, PO2, PO3} CO4: Explain the fundamentals of gear profiles and extrapolate various parameters of Spur gear teeth. {L2}{PO1, PO2} CO5:Design gear trains for power transmission. {L2}{PO1, PO2, PO3} |
Unit-1 |
Teaching Hours:9 |
||||||||
Classification of mechanisms
|
|||||||||
Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashoff’s law, Kinematic inversions of four bar chain and slider crank chains-Limit positions- Mechanical advantage- Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker mechanisms. | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Displacement, velocity and acceleration analysis of simple mechanisms.
|
|||||||||
Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Coriolis component of acceleration- introduction to linkage synthesis-three position graphical synthesis for motion and path generation | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
Classification of cams and followers
|
|||||||||
Classification of cams and followers- Terminology and definitions- Displacement diagrams-Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face followers | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Involute and cycloidal gear profiles
|
|||||||||
Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Surface contacts
|
|||||||||
Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication-friction clutches- belt and rope drives- friction in brakes. | |||||||||
Text Books And Reference Books: T1. Ghosh A. and Mallick A.K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988. T2. Ratan.S.S, “Theory of Machines”, 4th Edition, Tata McGraw Hill Publishing company Ltd. 2014.
| |||||||||
Essential Reading / Recommended Reading R1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005. R2. CleghornW.L. , Mechanisms of Machines, Oxford University Press, 2005. R3. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGrawHill, 2009. | |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU436 - ENTREPRENEURSHIP DEVELOPMENT (2020 Batch) | |||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||
Max Marks:50 |
Credits:2 |
||||||||
Course Objectives/Course Description |
|||||||||
· To develop entrepreneurship qualities and skills. · To motivate young engineers to identify new business opportunities in the emerging area of science and technology and to understand the steps involved in setting up the business. · To identify the source of finance, loans, capital structure, costing and application of it in new business venture. · To understand the demand forecasting, product life cycle, sales strategies, distribution channel and adventuring in business. To understand the concept, magnitude, causes and measures for small scale business enterprises. |
|||||||||
Course Outcome |
|||||||||
CO1: {Develop the entrepreneurship skills and identify the traits of entrepreneur.} {L3} {PO6,PO9,PO10,PO11} CO2: {Identify the source of information and the steps involved in setting up a business.}{ L3}{PO6,PO9,PO10,PO11} CO3: {Illustrate the principles of marketing and growth strategies based on the assessment of the market.}{ L2}{PO6,PO9,PO10,PO11} CO4: {Make use of available source of finance and effective management of work, capital, loans, taxation, pricing and procedures in a business.}{ L3}{PO6,PO9,PO10,PO11} CO5: {Explain the concept, magnitude, causes and measures in the institutional support to entrepreneurs.}{L2}{PO6,PO9,PO10,PO11,PO12} |
Unit-1 |
Teaching Hours:6 |
||||||||||||||||||
Entrepreneurship
|
|||||||||||||||||||
Entrepreneur – Types of Entrepreneurs – Difference between Entrepreneur and Entrepreneur – Entrepreneurship in Economic Growth, Factors Affecting Entrepreneurial Growth | |||||||||||||||||||
Unit-2 |
Teaching Hours:6 |
||||||||||||||||||
Motivation
|
|||||||||||||||||||
Major Motives Influencing an Entrepreneur – Achievement Motivation Training, self-Rating, Business Game, Thematic Apperception Test – Stress management, Entrepreneurship Development Programs – Need, Objectives | |||||||||||||||||||
Unit-3 |
Teaching Hours:6 |
||||||||||||||||||
Business
|
|||||||||||||||||||
Small Enterprises – Definition, Classification – Characteristics, Ownership Structures –Project Formulation – Steps involved in setting up a Business – identifying, selecting a Good Business opportunity, Market Survey and Research, Techno Economic Feasibility Assessment – Preparation of Preliminary Project Reports – Project Appraisal – Sources of Information – Classification of Needs and Agencies | |||||||||||||||||||
Unit-4 |
Teaching Hours:6 |
||||||||||||||||||
Financing and Accounting
|
|||||||||||||||||||
Need – Sources of Finance, Term Loans, Capital Structure, Financial Institution, management of working Capital, Costing, Break Even Analysis, Network Analysis Techniques of PERT/CPM – Taxation – Income Tax, Excise Duty – Sales Tax. | |||||||||||||||||||
Unit-5 |
Teaching Hours:6 |
||||||||||||||||||
Support to Entrepreneurs
|
|||||||||||||||||||
Sickness in small Business – Concept, Magnitude, causes and consequences, Corrective Measures – Government Policy for Small Scale Enterprises – Growth strategies in small industry – Expansion, Diversification, Joint Venture, Merger and Sub Contracting. | |||||||||||||||||||
Text Books And Reference Books: 1. B.B. Goel-Project Management-Deep and Deep Publications, New Delhi, 2004 2. Choudhury-S. Project Management –Tata Mc Grew –Hill- Publishing Company Limited, New Delhi,2005 3. Datta.A.K. Integrated Material Management 4. Gopalakrishnan.P. And Sthuram. M. Material management-An integral Approach 5. M.V.Varma –Material Management | |||||||||||||||||||
Essential Reading / Recommended Reading 1. Hisrich R D and Peters M P, “Entrepreneurship” 5th Edition Tata McGraw-Hill, 2002. 2. Mathew J Manimala,” Enterprenuership theory at cross roads: paradigms and praxis” Dream tech 2nd edition 2006. 3. Rabindra N. Kanungo “Entrepreneurship and innovation”, Sage Publications, New Delhi, 1998. 4. EDII “Faulty and External Experts – A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development” Institute of India, Ahmadabad, 1986 | |||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||
CY421 - CYBER SECURITY (2020 Batch) | |||||||||||||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||||||||||||
Max Marks:50 |
Credits:0 |
||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||
This mandatory course is aimed at providing a comprehensive overview of the different facets of Cyber Security. In addition, the course will detail into specifics of Cyber Security with Cyber Laws both in Global and Indian Legal environments |
|||||||||||||||||||
Course Outcome |
|||||||||||||||||||
SI. NO DESCRIPTION REVISED BLOOM’S TAXONOMY (RBT)LEVEL CO -1 Describe the basic security fundamentals and cyber laws and legalities. L2 CO -2 Describe various cyber security vulnerabilities and threats such as virus, worms, online attacks, Dos and others. L2 CO -3 Explain the regulations and acts to prevent cyber-attacks such as Risk assessment and security policy management. L3 CO -4 Explain various vulnerability assessment and penetration testing tools. L3 CO -5 Explain various protection methods to safeguard from cyber-attacks using technologies like cryptography and Intrusion prevention systems. L3 |
Unit-1 |
Teaching Hours:6 |
UNIT 1
|
|
Security Fundamentals-4 As Architecture Authentication Authorization Accountability, Social Media, Social Networking and Cyber Security.Cyber Laws, IT Act 2000-IT Act 2008-Laws for Cyber-Security, Comprehensive National Cyber-Security Initiative CNCI – Legalities | |
Unit-2 |
Teaching Hours:6 |
UNIT 2
|
|
Cyber Attack and Cyber Services Computer Virus – Computer Worms – Trojan horse.Vulnerabilities - Phishing - Online Attacks – Pharming - Phoarging – Cyber Attacks - Cyber Threats - Zombie- stuxnet - Denial of Service Vulnerabilities - Server Hardening-TCP/IP attack-SYN Flood | |
Unit-3 |
Teaching Hours:6 |
UNIT 3
|
|
Cyber Security Management Risk Management and Assessment - Risk Management Process - Threat Determination Process -Risk Assessment - Risk Management Lifecycle.Security Policy Management - Security Policies - Coverage Matrix Business Continuity Planning - DisasterTypes - Disaster Recovery Plan - Business Continuity Planning Process | |
Unit-4 |
Teaching Hours:6 |
UNIT 4
|
|
Vulnerability - Assessment and Tools: Vulnerability Testing - Penetration Testing Black box- white box.Architectural Integration: Security Zones - Devicesviz Routers, Firewalls, DMZ. Configuration Management - Certification and Accreditation for Cyber-Security. | |
Unit-5 |
Teaching Hours:6 |
UNIT 5
|
|
Authentication and Cryptography: Authentication - Cryptosystems - Certificate Services, Securing Communications: Securing Services - Transport – Wireless - Steganography and NTFS Data Streams. Intrusion Detection and Prevention Systems: Intrusion - Defense in Depth - IDS/IPS -IDS/IPS Weakness and Forensic AnalysisCyber Evolution: Cyber Organization – Cyber Future | |
Text Books And Reference Books: R1. Matt Bishop, “Introduction to Computer Security”, Pearson, 6th impression, ISBN: 978-81-7758-425-7. R2. Thomas R, Justin Peltier, John, “Information Security Fundamentals”, Auerbach Publications. R3. AtulKahate, “Cryptography and Network Security”, 2nd Edition, Tata McGrawHill.2003 R4. Nina Godbole, SunitBelapure, “Cyber Security”, Wiley India 1st Edition 2011 R5. Jennifer L. Bayuk and Jason Healey and Paul Rohmeyer and Marcus Sachs, “Cyber Security Policy Guidebook”, Wiley; 1 edition , 2012 R6. Dan Shoemaker and Wm. Arthur Conklin, “Cyber security: The Essential Body Of Knowledge”, Delmar Cengage Learning; 1 edition, 2011 R7. Stallings, “Cryptography & Network Security - Principles & Practice”, Prentice Hall, 6th Edition 2014 | |
Essential Reading / Recommended Reading NIL | |
Evaluation Pattern Only CIA will be conducted as per the University norms. No ESE Maximum Marks : 50 | |
MIA451A - ENVIRONMENTAL DESING AND SOCIO CULTURAL CONTEXT (2020 Batch) | |
Total Teaching Hours for Semester:90 |
No of Lecture Hours/Week:6 |
Max Marks:100 |
Credits:04 |
Course Objectives/Course Description |
|
Elective subjects have been suggested which are related to specialized areas in Architecture. The student may choose any one subject of interest. The detailed syllabus of the electives chosen and the modus operandi of teaching will be taken up by the faculty in charge. Course Objective: To expose the students to specialized areas of architecture. |
|
Course Outcome |
|
To acquire the knowledge of the chosen area of specialization; to apply or innovate the fundamentals and details learnt, in design. Level: Basic |
Unit-1 |
Teaching Hours:90 |
Environmental Design & Socio-cultural Context
|
|
The understanding of habitat in a cultural setting where architecture is explored in the context of craft-making – ecology, people, and architecture. Reading of the context and site intuitively and technically and initiate the design exercise of a Pavilion. Exploration of local material resources that inform architecture. Design development of a Pavilion comprising of a simple function for “Me and my environment”. | |
Text Books And Reference Books: T1.Ingersoll, R. And Kostof, S. (2013). World architecture: a cross-cultural history. Oxford: Oxford University Press. T2. Rapoport, A (1969). House Form and Culture. Prentice-Hall, Inc. Englewood Cliffs, NJ USA Pearson T3. Bary, D. & Ilay, C. (1998) Traditional Buildings of India, Thames & Hudson, ISBN-10 : 0500341613 T4. McHarg I. (1978), Design with Nature. NY: John Wiley & Co. | |
Essential Reading / Recommended Reading R1. Tillotsum G.H.R. (1989) The tradition of Indian Architecture Continuity, Controversy – Change since 1850, Delhi: Oxford University Press. R2. René Kolkman and Stuart H. Blackburn (2014). Tribal Architecture in Northeast India. R3. Richardson, V. (2001) New Vernacular Architecture; Laurance King Publishing. R4. Kenneth, F. (1983). Towards a Critical Regionalism: Six points for an architecture of resistance, In the Anti-Aesthetic: Essays on Postmodern Culture. (Ed.) Hal, F. Seattle: Bay Press. R5. Brunskill, R. W. (1987). Illustrated Handbook of Vernacular Architecture. Castle Rock: Faber & Faber. R6. Frampton, K., & Cava, J. (1995). Studies in tectonic culture: The poetics of construction in nineteenth and twentieth century architecture. Cambridge, Mass.: MIT Press. | |
Evaluation Pattern The Evaluation pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). CONTINUOUS INTERNAL ASSESSMENT (CIA): 50 Marks END SEMESTER EXAMINATION (ESE, VIVA-VOCE): 50 Marks TOTAL:100 Marks Note: For this course, a minimum of 50% marks in CIA is required to be eligible for VIVA-VOCE which is conducted as ESE. | |
MIA451B - DIGITAL ARCHITECTURE (2020 Batch) | |
Total Teaching Hours for Semester:90 |
No of Lecture Hours/Week:6 |
Max Marks:100 |
Credits:04 |
Course Objectives/Course Description |
|
Course Description: Elective subjects have been suggested which are related to specialized areas in Architecture. The student may choose any one subject of interest. The detailed syllabus of the electives chosen and the modus operandi of teaching will be taken up by the faculty in charge. Course objectives: To expose the students to specialized areas of architecture.
|
|
Course Outcome |
|
To acquire the knowledge of the chosen area of specialization; to apply or innovate the fundamentals and details learned, in design. Level: Basic |
Unit-1 |
Teaching Hours:90 |
Digital Architecture
|
|
| |
Text Books And Reference Books: T1. Achim Menges, Sean Ahlquist . (2011) Computational Design thinking T2: Fox, M. (2009) Interactive Architecture: Adaptive World, Princeton Architectural Press, ISBN-10 : 1616894067. T3: Linn C. D. & Fortmeyer, R. (2014) Kinetic Architecture: Designs for Active Envelopes, Images Publishing Group Pty Ltd., ISBN-10 : 1864704950 T4: Ali Rahim, 'Contemporary Process in Architecture', John Wiley & Sons, 2000. T5. Ali Rahim (Ed), 'Contemporary Techniques in Architecture, Halsted Press, 2002. | |
Essential Reading / Recommended Reading R1. Arturo Tedeschi.(2014) AAD_Algorithms-Aided Design. R2. Kostas Terzidis.(2006) Algorithmic Architecture R4. Lisa Iwamoto.(2009) Digital Fabrications: Architectural and Material Techniques, Architecture Briefs R5.Eisenmann, P. (1999) Diagram Diaries, Universe Publishing, ISBN-100789302640. | |
Evaluation Pattern The Evaluation pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). CONTINUOUS INTERNAL ASSESSMENT (CIA): 50 Marks END SEMESTER EXAMINATION (ESE, VIVA-VOCE): 50 Marks TOTAL:100 Marks Note: For this course, a minimum of 50% marks in CIA is required to be eligible for VIVA-VOCE which is conducted as ESE. | |
MIA451C - COLLABORATIVE DESIGN WORKSHOP (2020 Batch) | |
Total Teaching Hours for Semester:90 |
No of Lecture Hours/Week:6 |
Max Marks:100 |
Credits:04 |
Course Objectives/Course Description |
|
Elective subjects have been suggested which are related to specialized areas in Architecture. The student may choose any one subject of interest. The detailed syllabus of the electives chosen and the modus operandi of teaching will be taken up by the faculty in charge. Course objective: To expose the students to specialized areas of architecture. |
|
Course Outcome |
|
To acquire the knowledge of the chosen area of specialization; to apply or innovate the fundamentals and details learned, in design. Level: Basic |
Unit-1 |
Teaching Hours:90 |
Collaborative Design Workshop
|
|
Engage in a rural outreach program through an architecture design project by adopting appropriate technology that seeks solutions to environmental, social concerns and addresses the sustainability paradigm. Design and execution of an architectural project of a dwelling environment of a small community, with a focus on ideas of type and typology through site studies and analysis. Study of correlation between climate-environmental parameters and social-cultural patterns as generators of an architectural space. Construction and commissioning of the approved architectural design that is externally funded. | |
Text Books And Reference Books: T1. Dean, A., & Hursley, T. (2002). Rural Studio: Samuel Mockbee and an Architecture of Decency. Princeton Architectural Press. T2. Ching, F. D. K. (2015). Architecture: Form, Space, & Order (Fourth edition.). New Jersy: John Wiley. T3. Givoni, B. (1969). Man, climate and architecture. Elsevier. | |
Essential Reading / Recommended Reading R1. Minke. G (2012). Building with Bamboo, Design and Technology of a Sustainable Architecture. Birkhauser, Basel Switzerland. R2. Rapoport, A (1969). House Form and Culture. Prentice-Hall, Inc. Englewood Cliffs, NJ USA Pearson R3. Clark, R. H., & Pause, M. (2012). Precedents in architecture: Analytic diagrams, formative ideas, and partis (4th ed.). Hoboken, N.J.: John Wiley & Sons R4. Carter, R. (2012). On and By Frank Lloyd Wright: A Primer of Architectural Principles. Phaidon Press. R5. Curtis, W. (1994). Le Corbusier: Ideas and Forms. Phaidon Press; Revised edition. R6. Mertins, D., & Lambert, P. (2014). Mies. New York: Phaidon. | |
Evaluation Pattern The Evaluation pattern comprises of two components; the Continuous Internal Assessment (CIA) and the End Semester Examination (ESE). CONTINUOUS INTERNAL ASSESSMENT (CIA): 50 Marks END SEMESTER EXAMINATION (ESE, VIVA-VOCE): 50 Marks TOTAL:100 Marks Note: For this course, a minimum of 50% marks in CIA is required to be eligible for VIVA-VOCE which is conducted as ESE. | |
MICS432P - INTRODUCTION TO PROGRAMMING PARADIGN (2020 Batch) | |
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
Max Marks:100 |
Credits:4 |
Course Objectives/Course Description |
|
Software development in business environment has become more sophisticated, the software implementation is becoming increasingly complex and requires the best programming paradigm which helps to eliminate complexity of large projects. Object Oriented Programming (OOP) has become the predominant technique for writing software at present. Many other important software development techniques are based upon the fundamental ideas captured by object-oriented programming. The course also caters to the understanding of event driven programming, generic programming and concurrent programming. |
|
Course Outcome |
|
CO1: Demonstrate the fundamental concepts of Object Oriented Programming. CO2: Make use of the inheritance and interface concepts for effective code reuse. CO3: Inspect dynamic and interactive graphical applications using AWT and SWING. CO4: Build an application using generic programming and exception handling concepts. CO5: Assess and design concurrent and parallel applications using multithreaded concepts. |
Unit-1 |
Teaching Hours:15 |
OBJECT-ORIENTED PROGRAMMING : FUNDAMENTALS
|
|
Review of OOP - Objects and classes in Java – defining classes – methods - access specifiers – static members – constructors – finalize method – Arrays – Strings - Packages – JavaDoc comments.
LAB: 1. Implementation of Simple Java programs to understand data types, variables, operators, strings, input and output, control flow, arrays. 2. Implementation of Classes and Objects – static fields, methods, method parameters, object construction. | |
Unit-2 |
Teaching Hours:18 |
OBJECT-ORIENTED PROGRAMMING : INHERITANCE
|
|
Inheritance – class hierarchy – polymorphism – dynamic binding – final keyword – abstract classes – the Object class – Reflection – interfaces – object cloning – inner classes.
LAB:
3. Implementation of Inheritance – how inheritance is handled using java keywords: extends and implements. 4. Implementation of Interfaces – programs on usage. 5. Implementation of Inner classes – programs on inner classes. | |
Unit-3 |
Teaching Hours:12 |
EVENT-DRIVEN PROGRAMMING
|
|
Graphics programming – Frame – Components – working with 2D shapes – Using color, fonts, and images - Basics of event handling – event handlers – adapter classes – actions – mouse events – AWT event hierarchy – introduction to Swing – Model-View- Controller design pattern – buttons – layout management – Swing Components LAB: 7. Implementation of event driven programming | |
Unit-4 |
Teaching Hours:15 |
GENERIC PROGRAMMING
|
|
Motivation for generic programming – generic classes – generic methods – generic code and virtual machine – inheritance and generics – reflection and generics – Exceptions – exception hierarchy – throwing and catching exceptions.
LAB: 7. Implementation of Generic programming. 8. Implementation of Exceptions. | |
Unit-5 |
Teaching Hours:15 |
CONCURRENT PROGRAMMING
|
|
Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – synchronizers – threads and event-driven programming, Parallel programming –fork, join framework.
LAB: 9. Implementation of Multithreaded programs 10. Implementation of Debugging using Assertions, logging and using a debugger.
| |
Text Books And Reference Books: Text Books: T1. Cay S. Horstmann and Gary Cornell, “Core Java, Volume I – Fundamentals ” ,Ninth Edition, Prentice Hall, 2012. T2. Martina Seidl, Marion Scholz, Christian Huemer and GertiKappel , “UML @ Classroom An Introduction to Object-Oriented Modeling Series: Undergraduate Topics in Computer Science”, Springer, 2015. | |
Essential Reading / Recommended Reading Reference Books: R1. Cay S. Horstmann , “Java SE8 for the Really Impatient: A Short Course on the Basics (Java Series)”, 2014. R2. Herbert Schildt, “Java: The Complete Reference (Complete Reference Series)”, Ninth Edition, 2014. R3. Bruce Eckel, “Thinking in Java”, 4th Edition, Prentice Hall Professional, 2006. R4. Doug Rosenberg and Matt Stephens, “Use Case Driven Object Modeling with UML: Theory and Practice (Expert's Voice in UML Modeling)”,APress, 2013. | |
Evaluation Pattern CIA I : Assignment and Continuous Assessment : 10 marks CIA II : Mid Semester Examination (Theory) : 10 marks CIA III : Closed Book Test and Continuous Assessment: 10 marks Lab marks :35 marks Attendance : 05 marks End Semester Examination(ESE) : 30% (30 marks out of 100 marks) Total: 100 marks | |
MIMBA431 - ORGANISATIONAL BEHAVIOUR (2020 Batch) | |
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
Course Description: The course is offered as a mandatory core course for all students in Trimester II. The course introduces students to a comprehensive set of concepts and theories, facts about human behaviour and organizations that have been acquired over the years. The subject focuses on ways and means to improve productivity, minimize absenteeism, increase employee engagement and so on thus, contributing to the overall effectiveness. The basic discipline of the course is behavioral science, sociology, social psychology, anthropology and political science. Course Objectives: To make sense of human behaviour, use of common sense and intuition is largely inadequate because human behaviour is seldom random. Every human action has an underlying purpose which was aimed at personal or societal interest. Moreover, the uniqueness of each individual provides enough challenges for the managers to predict their best behaviour at any point of time. A systematic study of human behaviour looks at the consistencies, patterns and cause effect relationships which will facilitate understanding it in a reasonable extent. Systematic study replaces the possible biases of intuition that can sabotage the employee morale in organizations. |
|
Course Outcome |
|
Course Learning Outcomes: On having completed this course student should be able to: At the end of the course the student will be able to: CLO1: Determine the individual and group behavior in the workplace. CLO2: Assess the concepts of personality, perception and learning in Organizations. CLO3: Analyze various job-related attitudes. CLO4: Design motivational techniques for job design, employee involvement, incentives, rewards & recognitions. CLO5: Manage effective groups and teams in organizations. |
Unit-1 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Unit-1: Introduction to Organizational Behaviour
|
|||||||||||||||||||||||||||||||||||||||||
Historical Development, Behavioural sciences and Organizational behaviour, Meaning, Importance, Basic concepts, methods and tools for understanding behaviour, Challenges and Opportunities, OB model, ethical issues in organizational Behaviour. Cross-cultural management, managing multicultural teams, communicating across cultures, OB in the digital age. | |||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Unit-2: Individual Behaviour ? Personality, Perception and Learning
|
|||||||||||||||||||||||||||||||||||||||||
Personality: Foundations of individual behaviour, Personality, Meaning and Importance, Development of personality, Determinants of personality, Theories of personality, Relevance of personality to managers. Perception: Nature, Importance and Definition of Perception, Factors involved in perception, The Perceptual Process, Perceptual Selectivity and Organization, Applications in Organizations. Learning: Definition and Importance, Theories of learning, Principles of learning, Shaping as managerial tool. | |||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Unit-3: Attitudes, Values & Job Satisfaction
|
|||||||||||||||||||||||||||||||||||||||||
Attitudes: Sources and types of attitudes, Attitude formation and change, Cognitive Dissonance Theory. Effects of employee attitude, Job related attitudes Values: meaning, importance, source and types, and applications in organizations. Job satisfaction: Measuring Job Satisfaction, Causes of Job Satisfaction, impact of satisfied and dissatisfied employees on the workplace. | |||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Unit-4: Motivation
|
|||||||||||||||||||||||||||||||||||||||||
Meaning, process and significance of motivation, Early Theories of motivation: Hierarchy of Needs, Theory X Theory Y, Two Factor theory, McClelland Theory of Needs, Contemporary Theories of Motivation: Goal Setting theory, Self-Efficacy theory, Equity theory/Organizational justice, Expectancy theories, Motivation theories applied in organizations: Job design, employee involvement, rewards and global implications | |||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:12 |
||||||||||||||||||||||||||||||||||||||||
Unit-5: Groups & Teams
|
|||||||||||||||||||||||||||||||||||||||||
Groups: Meaning, classification and nature of groups, Stages of group development, an alternative model for Temporary Groups with punctuated equilibrium model, Group properties: Roles, Norms, Status, Size and Cohesiveness, Group decision making. Teams: Meaning of teams, Types of teams, Creating Effective teams, what makes individuals into effective team players, Team development, Team decision making. | |||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: Core Text Books: T1. Robbins, S P., Judge, T A and Vohra, N (2018). Organizational Behavior. 18th Edition, Prentice Hall of India. | |||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading Rao V S P & V Sudeep 2018, Managing Organisational Behavior, Trinity Press, 3rd edition, New Delhi. | |||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||
MIPSY432 - PEOPLE THOUGHTS AND SITUATIONS (2020 Batch) | |||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:60 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:4 |
||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||
The course is an exploration of the prevailing theories and empirical methods that explain about people’s thoughts, feelings and behaviors in a social context. This throws light on cognitive and social factors that influence human behavior, especially in situations populated by others.
|
|||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||
At the end of the course students will be able: |
Unit-1 |
Teaching Hours:6 |
||||||||
Engineering Materials
|
|||||||||
Engineering materials - Introduction Engineering Materials and their mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards. endurance limit, notch sensitivity. | |||||||||
Unit-2 |
Teaching Hours:6 |
||||||||
Design of Cylinder, Piston and Connecting Rod
|
|||||||||
Choice of material for cylinder and piston, design of cylinder, piston, and piston pin, piston rings, piston failures, lubrication of piston assembly | |||||||||
Unit-3 |
Teaching Hours:6 |
||||||||
Design of Spur and Helical Gears
|
|||||||||
Spur Gears:Definitions, stresses in gear tooth: Lewis equation and form factor, Design for strength, Dynamic load and wear load. Helical Gears:Definitions, formative number of teeth, Design based on strength, dynamic and wear loads. | |||||||||
Unit-4 |
Teaching Hours:6 |
||||||||
Design of Bevel Gears
|
|||||||||
Nomenclature, Straight teeth bevel gears, Cone angle, Virtual number of teeth, Face width, Static strength, Dynamic Strength, Wear Strength. | |||||||||
Unit-4 |
Teaching Hours:6 |
||||||||
Worm Gears
|
|||||||||
Nomenclature, Materials, Reversibility, Mechanical advantage, Strength design, Efficiency, Heat dissipation. | |||||||||
Unit-5 |
Teaching Hours:6 |
||||||||
Design of Springs
|
|||||||||
Types of springs - stresses in Helical coil springs of circular and non-circular cross sections. Tension and compression springs, springs under fluctuating loads, Leaf Springs: Stresses in leaf springs. Equalized stresses and Energy stored in springs. the barriers, rule of effective communication. | |||||||||
Text Books And Reference Books: 1.Kulkarni S. G, “Machine Design”, Tata McGraw-Hill Education, 2008. 2.Bhandari V, “Design of Machine Elements”, Tata McGraw-Hill Education, 2010. 3.Design of Machine Elements 2, K Raghavendra, CBS Publishers and Distributors Private Limited, New Delhi, 1nd Edition 2017. | |||||||||
Essential Reading / Recommended Reading 1.William Orthein, “Machine Component Design”, Jaico Publishing House, 1998 - 99. 2.Prabhu T. J, “Design of Transmission Systems”, Private Publication, 2000. 3.Shigley J, “Mechanical Engineering Design”, McGraw Hill 10 edition (1 February 2014). 4.Joseph Edward Shigley and Charles R.Mischke, “Mechanical Engineering Design”, McGraw-Hill International Edition, 1989. 2.GitinM.Maitra and LN Prasad, “Hand Book of Mechanical Design”, Tata McGraw Hill, 185. 3.Norton R.L, “Design of Machinery”, McGraw Hill, 1999. 4.Spots M. F, “Design of Machine Elements”, Prentice Hall of India Private Ltd., New Delhi, 1983. 5.William Orthwein, “Machine Component Design”, Vol. I and II, JaicoPublising house, Chennai, 1996. 6.Maitra, “Handbook of Gear Design”, Tata McGraw-Hill, New Delhi, 1986. 7.Design Data, PSG College of Technology, 2008. 8.Maitra, “Handbook of Gear Design”, Tata McGraw-Hill, New Delhi, 1986. 9.Design Data, PSG College of Technology, 2008. | |||||||||
Evaluation Pattern
| |||||||||
AU532P - AUTOMOTIVE ENGINE SYSTEMS (2019 Batch) | |||||||||
Total Teaching Hours for Semester:75 |
No of Lecture Hours/Week:5 |
||||||||
Max Marks:100 |
Credits:4 |
||||||||
Course Objectives/Course Description |
|||||||||
•To make students familiar with the intake and exhaust system components. ●To understand about carburetion, and types of petrol injection systems. ●To introduce students to diesel injection systems and the function of components like pumps, mechanical and pneumatic governors, fuel injectors and injection nozzles. ●To introduce students to lubrication and cooling systems, supercharging turbocharging and scavenging. |
|||||||||
Course Outcome |
|||||||||
CO1: Understand how make a perfect Design of Intake manifold for proper air flow and back pressure in exhaust manifold of engines. L1,2, PO1,2,4,5 CO2: Learns to improve the carburettor design for defining the rich and lean mixture. L1,2, PO1,2,4,5 CO3: Understand various methods of injection systems for C.I. Engines for improving the combustion process. L1,2, PO1,2,4,5 CO4: Understand the Heat Exchangers phenomenon to improve cooling method in radiators and other cooling systems. L1,2, PO1,2,4,5 CO5: Tells the importance of charging method for engines which improves engine efficiency. L1,2, PO1,2,4,5 |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intake and Exhaust Systems
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intake system components - Discharge coefficient, Pressure drop - Air filter, intake manifold, Connecting Pipe - Exhaust system components – Exhaust manifold and exhaust pipe - Spark arresters - Exhaust mufflers, Types, operation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Carburetion and Gasoline Injection
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mixture requirements for steady state and transient operation, Mixture formation studies of volatile fuels, design of elementary carburettor Chokes - Effects of altitude on carburetion - Carburettor for 2-stroke and 4-stroke engines – carburettor systems for emission control. Petrol injection- Open loop and closed loop systems, mono point, multi-point and direct injection systems - Principles and Features, Bosch injection systems.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Diesel Injection
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Requirements - Air and solid injection - Function of components - Jerk and distributor type pumps- pump calibration .Pressure waves - Injection lag – Unit injector - Mechanical and pneumatic governors - Fuel injector - Types of injection nozzle - Nozzle tests - Spray characteristics - Injection timing - Factors influencing fuel spray atomization, penetration and dispersion of diesel. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lubrication and Cooling
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Need for cooling system - Types of cooling system - Liquid cooled system: Thermosyphon system, Forced circulation system, pressure cooling system - properties of coolant, additives for coolants Need for lubrication system - Mist lubrication system, wet sump any dry sump lubrication - Properties of lubricants, consumption of oil. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supercharging and Scavenging
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objectives - Effects on engine performance - engine modification required -Thermodynamics of supercharging and Turbocharging – Turbo lag-Windage losses- Turbo charging methods - Engine exhaust manifold arrangements. Classification of scavenging systems -Mixture control through Reed valve induction - Charging Processes in two-stroke cycle engine - Terminologies -Shankey diagram - perfect displacement, perfect mixing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Text Books And Reference Books: T1. Ganesan V, “Internal combustion engines”, 4th edition, Tata McGraw Hill Education, 2012 T2. Rajput R. K, “A textbook of Internal Combustion Engines”, 3rd edition, Laxmi Publications (P) Ltd, 2016. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Ramalingam K. K, “Internal Combustion Engine”, Scitech Publication (India) Pvt.Ltd. 2000. R2. Duffy Smith, “Auto Fuel Systems”, The Good Heart Willcox Company Inc., Publishers, 1987. R3. Edward F, Obert, “Internal Combustion Engines and Air Pollution”, Intext Education Publishers, 1980. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AU533 - COMPUTER AIDED MACHINE DRAWING (2019 Batch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
· To visualize an object and convert it into a drawing. · To gain knowledge of conventional representation of various machining and mechanical details as per IS. · To become conversant with 2-D and 3-D drafting. · Gaining the knowledge of CAD software and its features for effective representation of machine components and their assembly. · Understand the format and Standards of Machine Drawing. · Understand the technical information on machine drawings. · Understanding and drawing of various views and machine components. Learning how to assemble and disassemble important parts used in major mechanical engineering applications. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CO1: {Students will be able to understand the concept and importance of limits fits and tolerance in the manufacturing drawing. } {L1,L2} {PO1,PO2} CO2: {Students will be able to understand the thread terminologies, different types of fasteners, keys and joints and couplings used in machine parts. }{L1,L2,L5}{PO1,PO2,PO5} CO3: {Student will be able to perform both 2D to 3D drawings of any components using the modeling software.}{ L1,L5}{PO1,PO5} CO4: {Students will be able to visualize and model different parts of a machine.}{L1,L5}{PO1,PO5} CO5:{ Students will be able to construct assemblies and drawing of various machines like screw jack, machine vice, tail stock of lathe from the concepts learnt using the modeling software.}{ L1,L2,L5}{PO1,PO2,PO5} |
Unit-1 |
Teaching Hours:8 |
||||||||
Introduction: Sections of Solids
|
|||||||||
Review of graphic interface of the software. Review of basic sketching commands and navigational commands. Starting a new drawing sheet. Sheet sizes. Naming a drawing, Drawing units, grid and snap. Sections of Solids: Sections of Pyramids, Prisms, Cubes, Tetrahedrons, Cones and Cylinders resting only on their bases (No problems on, axis inclinations, spheres and hollow solids). True shape of sections. | |||||||||
Unit-1 |
Teaching Hours:8 |
||||||||
Introduction: Orthographic Views
|
|||||||||
Orthographic Views: Conversion of pictorial views into orthographic projections. of simple machine parts with or without section. (Bureau of Indian Standards conventions are to be followed for the drawings) Hidden line conventions. Precedence of lines. | |||||||||
Unit-2 |
Teaching Hours:8 |
||||||||
Fasteners
|
|||||||||
Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw. | |||||||||
Unit-2 |
Teaching Hours:8 |
||||||||
Thread Forms
|
|||||||||
Thread terminology, sectional views of threads. ISO Metric (Internal & External) BSW (Internal & External) square and Acme. Sellers thread, American Standard thread. | |||||||||
Unit-3 |
Teaching Hours:8 |
||||||||
Keys & Joints
|
|||||||||
Parallel key, Taper key, Feather key, Gibhead key and Woodruff key | |||||||||
Unit-3 |
Teaching Hours:8 |
||||||||
Riveted Joints
|
|||||||||
Single and double riveted lap joints, butt joints with single/double cover straps (Chain and Zigzag, using snap head rivets). cotter joint (socket and spigot), knuckle joint (pin joint) for two rods. | |||||||||
Unit-4 |
Teaching Hours:8 |
||||||||
Couplings
|
|||||||||
Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint) | |||||||||
Unit-4 |
Teaching Hours:8 |
||||||||
Introduction to GD&T
|
|||||||||
Introduction to dimensional analysis, GD&T and its tools, Datum’s and concepts, manufacturing GD&T and its application, application of GD&T and its Principles. | |||||||||
Unit-5 |
Teaching Hours:13 |
||||||||
Assembly Drawings
|
|||||||||
1. Plummer block (Pedestal Bearing) 2. Rams Bottom Safety Valve 3. I.C. Engine connecting rod 4. Screw jack (Bottle type) 5. Tailstock of lathe 6. Machine vice 7. Tool head of the shaper | |||||||||
Text Books And Reference Books: T1. 'A Primer on Computer Aided Machine Drawing-2007’, Published by VTU, Belgaum. T2. 'Machine Drawing', N.D.Bhat & V.M.Panchal. | |||||||||
Essential Reading / Recommended Reading R1. 'A Text Book of Computer Aided Machine Drawing', S. Trymbaka Murthy, CBS R2. Publishers, New Delhi, 2007 R3. 'Machine Drawing’, K.R. Gopala Krishna, Subhash Publication. R4. 'Machine Drawing with Auto CAD', Goutam Pohit & Goutham Ghosh, 1st Indian print Pearson Education, 2005 R5. 'Auto CAD 2006, for engineers and designers', Sham Tickoo. Dream tech 2005 R6. 'Machine Drawing', N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by Tata Mc GrawHill,2006 R7. Fundamentals of Geometric Dimension & Tolerancing, by Alex Krulikowski | |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU544E1 - AUTOMOTIVE AERODYNAMICS (2019 Batch) | |||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||
Max Marks:100 |
Credits:3 |
||||||||
Course Objectives/Course Description |
|||||||||
This course provides the basic knowledge about types of aerodynamic drag and the optimization techniques for minimum drag on automotive bodies. On completion of this course, the students are exposed to understand the concept of shape optimization and vehicle handling to minimize different types of aerodynamic drag. |
|||||||||
Course Outcome |
|||||||||
CO 1: Discuss aerodynamics drag and its effect on a vehicle at different conditions of operation. L1, L2, PO1,2,8,9 CO2: Describe strategies to reduce aerodynamic drag L1, L2, PO1,2,8,9 CO3: Analyse cabs for better aerodynamics L1, L2,L3, L4 PO1,2,8,9 CO4: Analyse of vehicle body considering the forces and moments caused by the aerodynamics of a car. L1, L2,L3, L4 PO1,2,8,9 CO5: Discuss wind tunnel and its application for simulating aerodynamics in a real time scenario L1, L2, PO1,2,8,9 |
Unit-1 |
Teaching Hours:8 |
||||||||
Introduction
|
|||||||||
Scope – Historical development trends – Fundamentals of fluid mechanics – Flow phenomenon related to vehicles Types of aerodynamic drag. Forces and moments influencing drag. Effects of forces and moments. Various body optimization techniques for minimum drag. – External & Internal flow problems. Resistance to vehicle motion – Performance – Fuel consumption and performance – Potential of vehicle aerodynamics. | |||||||||
Unit-2 |
Teaching Hours:10 |
||||||||
Aerodynamic Drag of Cabs
|
|||||||||
Car as a bluff body – Flow field around car – drag force – types of drag force – analysis of aerodynamic drag – drag coefficient of cars – strategies for aerodynamic development – low drag profiles. | |||||||||
Unit-3 |
Teaching Hours:10 |
||||||||
Shape Optimization of Cabs
|
|||||||||
Front and modification – front and rear wind shield angle – Boat tailing – Hatch back, fast back and square back – Dust flow patterns at the rear – Effect of gap configuration – effect of fasteners | |||||||||
Unit-4 |
Teaching Hours:10 |
||||||||
Vehicle Handling
|
|||||||||
The origin of force and moments on a vehicle – side wind problems – methods to calculate forces and moments – vehicle dynamics under side winds – the effects of forces and moments – Characteristics of forces and moments – Dirt accumulation on the vehicle – wind noise – drag reduction in commercial vehicles. | |||||||||
Unit-5 |
Teaching Hours:7 |
||||||||
Wind Tunnels For Automotive Aerodynamics
|
|||||||||
Introduction – Principles of wind tunnel technology Flow visualization techniques. Testing with wind tunnel balance (scale models).– Limitation of simulation – Stress with scale models – full scale wind tunnels – measurement techniques – Equipment and transducers – road testing methods – Numerical methods | |||||||||
Text Books And Reference Books: 1. Hucho, W.H., Aerodynamics of Road vehicles, Butterworths Co. Ltd., 2013. 2. Pope,A., Wind Tunnel Testing, John Wiley & Sons, 2nd Edn., New York. 3. Aerodynamics by AJ Clancy | |||||||||
Essential Reading / Recommended Reading 1. Automotive Aerodynamics: Update SP-706, SAE, 1987. 2. Vehicle Aerodynamics, SP-1145, SAE, 1996. 3. Aircraft Flight by AC Kermode.
| |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU544E2 - HYDRAULICS AND PNEUMATIC CONTROL (2019 Batch) | |||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||
Max Marks:100 |
Credits:3 |
||||||||
Course Objectives/Course Description |
|||||||||
|
|||||||||
Course Outcome |
|||||||||
CO1: Understand the operating principle, performance and selection procedure of hydraulic elements and machines {L1} {PO1,} CO2: Understand the working principle of actuators and evaluate actuator performance and justify selection of actuators for various applications{L2} {PO1} CO3: Identify different types of control valves and understand their working principle and application. {L2} {PO2} CO4: Design and analyse hydraulic circuits. {L3} {PO2} CO5: Design and analyse pneumatic and electro-pneumatic circuit. {L3} {PO2} |
Unit-1 |
Teaching Hours:9 |
||||||||
Introduction to Hydraulic Power
|
|||||||||
Introduction to Hydraulic Power: Definition of hydraulic system, advantages, limitations, applications, Pascal's law, structure of hydraulic control system, problems on Pascal's law. The source of Hydraulic Power: Pumps Classification pumps, Pumping theory of positive displacement pumps, construction and working of Gear pumps, Vane pumps, Piston pumps, fixed and variable displacement pumps, Pump performance characteristics, pump Selection factors, problems on pumps. | |||||||||
Unit-1 |
Teaching Hours:9 |
||||||||
Hydraulic Actuators and Motors
|
|||||||||
Classification cylinder and hydraulic motors, Linear Hydraulic Actuators [cylinders], single and double acting cylinder, Mechanics of Hydraulic Cylinder Loading, mounting arrangements, cushioning, special types of cylinders, problems on cylinders, construction and working of rotary actuators such as gear, vane, piston motors, Hydraulic Motor Theoretical Torque, Power and Flow Rate, Hydraulic Motor Performance, problems, symbolic representation of hydraulic actuators (cylinders and motors). | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Control Components in Hydraulic Systems:
|
|||||||||
Classification of control valves, Directional Control Valves- Symbolic representation, constructional features of poppet, sliding spool, rotary type valves solenoid and pilot operated DCV, shuttle valve, check valves, Pressure control valves - types, direct operated types and pilot operated types. Flow Control Valves - compensated and non-compensated FCV, needle valve, temperature compensated, pressure compensated, pressure and temperature compensated FCV, symbolic representation. | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Hydraulic Circuit Design And Analysis
|
|||||||||
Control of Single and Double Acting Hydraulic Cylinder, Regenerative circuit, Pump Unloading Circuit, Double Pump Hydraulic System, Counter balance Valve Application, Hydraulic Cylinder Sequencing Circuits, Automatic cylinder reciprocating system, Locked Cylinder using Pilot check Valve, Cylinder synchronizing circuit using different methods, factors affecting synchronization, Hydraulic circuit for force multiplication, Speed Control of Hydraulic Cylinder, Speed Control of Hydraulic Motors, Safety circuit, Accumulators, types, construction and applications with circuits. | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
Introduction to Pneumatic Control
|
|||||||||
Definition of pneumatic system, advantages, limitations, applications, Choice of working medium. Characteristic of compressed air. Structure of Pneumatic control System, fluid conditioners and FRL unit. Pneumatic Actuators: Linear cylinder - Types, Conventional type of cylinder- working, End position cushioning, seals, mounting arrangements- Applications. Rod - Less cylinders types, working, advantages, Rotary cylinders- types construction and application, symbols. | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
Maintenance of Hydraulic System
|
|||||||||
Hydraulic Oils - Desirable properties, general type of Fluids, Sealing Devices, Reservoir System, Filters and Strainers, wear of Moving Parts due to solid -particle Contamination, temperature control (heat exchangers), Pressure switches, trouble shooting. | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Pneumatic Control Valves
|
|||||||||
DCV such as poppet, spool, suspended seat type slide valve, pressure control valves, flow control valves, types and construction, use of memory valve, Quick exhaust valve, time delay valve, shuttle valve, twin pressure valve, symbols. 3 Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, speed control of cylinders - supply air throttling and Exhaust air throttling and Exhaust air throttling. | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Signal Processing Elements
|
|||||||||
Use of Logic gates - OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates, Pressure dependant controls- types - construction - practical applications, Time dependent controls principle. Construction, practical applications. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Multi- Cylinder Application
|
|||||||||
Coordinated and sequential motion control, Motion and control diagrams. Signal elimination methods, Cascading method- principle, Practical application examples (up to two cylinders) using cascading method (using reversing valves). | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Electro- Pneumatic Control
|
|||||||||
Principles - signal input and output, pilot assisted solenoid control of directional control valves, Use of relay and contactors. Control circuitry for simple signal cylinder application. Compressed Air: Production of compressed air- Compressors Preparation of compressed air-Driers, Filters, Regulators, Lubricators, Distribution of compressed air Piping layout. | |||||||||
Text Books And Reference Books:
| |||||||||
Essential Reading / Recommended Reading 1. 'Oil Hydraulic systems', Principles and Maintenance S. R. Majurr, Tata Mc Graw Hill Publishing Company Ltd. - 2001 2. 'Industrial Hydraulics', Pippenger, Hicks" McGraw Hill, New York 3. 'Hydraulic & Pneumatic Power for Production', Harry L. Stewart 4. 'Pneumatic Systems', S. R. Majumdar, Tata Mc Graw Hill Publish 1995 5. Power Hydraulics' Michael J Pinches & John G Ashby, Prentice Hall | |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU544E3 - ENERGY ENGINEERING (2019 Batch) | |||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||
Max Marks:100 |
Credits:3 |
||||||||
Course Objectives/Course Description |
|||||||||
The objective of the course is to familiarize the students about the utilization of various alternative sources of energy technologies for thermal and electrical needs with environmental merits. |
|||||||||
Course Outcome |
|||||||||
CO1: Compare the types of fuels used in a power plant based on their advantages and disadvantages {L1,L2}{PO1,PO2,PO7} CO2: Design of chimney by calculating the height of chimney to produce a draft pressure and design of layout of a diesel power plant based on capacity.{L1,L2,L3,L4,L5}{PO1,PO2, PO3,PO4,PO6,PO7} CO3: Compare the advantages and disadvantages hydel and nuclear power plant. {L1,L2,L3 }{PO1,PO2,PO4,PO6,PO7} CO4: Compare the advantages and disadvantages of wind, solar and tidal energy. {L1,L2,L3 }{PO1,PO2,PO4,PO6,PO7} CO5: Describe the working of fuel cell, geothermal and bio-mass energy to understand the scope for each. {L1,L2,L3 }{PO1,PO2,PO4,PO6,PO7} |
Unit-1 |
Teaching Hours:9 |
||||||||
Steam Power Plant
|
|||||||||
Different Types of Fuels used for steam generation, Equipment for burning coal in lump form, strokers, different types, Oil burners. | |||||||||
Unit-1 |
Teaching Hours:9 |
||||||||
Pulverized Coal And Furnace
|
|||||||||
Advantages and Disadvantages of using pulverized fuel, Equipment for preparation and burning of pulverized coal, unit system and bin system. Pulverized fuel furnaces, cyclone furnace, Coal and ash handling, Generation of steam using forced circulation, high and supercritical pressures. | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Steam Generators
|
|||||||||
Chimneys - Natural, forced, induced and balanced draft, Calculations and numericals involving height of chimney to produce a given draft. Cooling towers and Ponds, Accessories for the Steam generators such as Superheaters, Desuperheater, control of superheaters, Economizers, Air pre-heaters and re-heaters. | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Diesel Engine Power Plant:
|
|||||||||
Applications of Diesel Engines in Power field, Method of starting Diesel engines, Auxiliaries like cooling and lubrication system, filters, centrifuges, Oil heaters, intake and exhaust system, Layout of diesel power plant. | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
Nuclear Power Plant:
|
|||||||||
Principles of release of nuclear energy; Fusion and fission reactions, Nuclear fuels used in the reactors, Multiplication and thermal utilization factors, Elements of the nuclear reactor; moderator, control rod, fuel rods, coolants. Brief description of reactors of the following types - Pressurized water reactor, Boiling water reactor, Sodium graphite reactor, Fast Breeder reactor, Homogeneous graphite reactor and gas cooled reactor, Radiation hazards, Shieldings, Radio-active waste disposal. | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
Hydro-Electric Plants:
|
|||||||||
Hydrographs, flow duration and mass curves, unit hydrograph and numericals. Storage and pondage, pumped storage plants, low, medium and high head plants, Penstock, water hammer, surge tanks, gates and valves, General layout of hydel power plants. | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Solar Energy:
|
|||||||||
Solar Extra-terrestrial radiation and radiation at the earth surface, radiation-measuring instruments, working principles of solar flat plate collectors, solar pond and photovoltaic conversion (Numerical Examples). | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Wind and Tidal Power:
|
|||||||||
Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor. Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Direct Energy Conversion Systems:
|
|||||||||
Basic principle of Thermo-electric and Thermo-ionic power generations, Fuel cell - principle, types, applications, Magneto hydrodynamic power generation - Principle, open cycle and closed cycles, Hydrogen energy - Production, storage, and applications. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
OTEC, Geothermal Energy and Biomass:
|
|||||||||
OTEC:Principle of working, Rankine cycle. Geothermal Energy Conversion:Principle of working, types of geothermal station with schematic diagram. Biomass: Biomass, sources of biomass, thermo-chemical and bio-chemical conversion of biomass - pyrolysis, gasification, combustion and fermentation, Gasifiers, Digesters, economics of biomass power generation. | |||||||||
Text Books And Reference Books: 1.P. K. Nag“Power Plant Engineering”, Tata McGraw Hill, 4th ed. edn 2014. 2.Domakundawar“Power Plant Engineering”, Dhanpath Rai sons. 2015.
| |||||||||
Essential Reading / Recommended Reading 1.R. K. Rajput “Power Plant Engineering”, Laxmi publication, New Delhi. 2.A. W. Culp Jr. “Principles of Energy conversion”, McGraw Hill. 1996. 3.G D Rai, “Non-conventional Energy sources”, Khanna Publishers. 4.B H Khan “Non-conventional resources”, TMH - 2009.
| |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU544E4 - OPERATIONS RESEARCH (2019 Batch) | |||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||
Max Marks:100 |
Credits:3 |
||||||||
Course Objectives/Course Description |
|||||||||
• One or more advanced courses on applications in: supply chain and manufacturing systems; data analysis; information engineering; financial engineering; or service systems. • A collaborative systems design experience. • Collaborative project experiences involving both written and oral presentations. • Courses with significant experiential learning components. • Experiences with identifying, accessing, evaluating, and interpreting information and data in support of assignments, projects, or research. • Course experiences with large-scale datasets. |
|||||||||
Course Outcome |
|||||||||
CO1: Express the applications of Operations Research and mathematical modeling in solving industrial problems and to solve Engineering and managerial situations as LPP.(L2)(PO1,PO2,PO12) CO2: Compute Engineering and managerial situations as Transportation and Assignment problems using quantitative methods which include MODI method and Hungarian method .(L3)(PO1,PO2,PO11) CO3: Evaluate the trouble spots in a project namely the delays , interruptions by determining the critical factors using CPM and PERTH technique CO4: Solve for the congestions and delays of waiting in line using Queuing Theory.(L3)(PO1,PO2) CO5: Solve for competitive situations using analytical and graphical methods of Game theory. (L3)(PO1,PO2) CO6: Selection of appropriate order in which jobs (operations)are assigned to facilities using Sequencing methodology (L3)(PO1,PO2) |
Unit-1 |
Teaching Hours:9 |
||||||||
Introduction:
|
|||||||||
Evolution of OR, definition of OR, scope of OR, application areas of OR, steps (phases) in OR study, characteristics and limitations of OR, models used in OR, linear programming (LP) problem-formulation and solution by graphical method. | |||||||||
Unit-1 |
Teaching Hours:9 |
||||||||
Solution of Linear Programming Problems:
|
|||||||||
The simplex method-canonical and standard form of an LP problem, slack, surplus and artificial variables, big M method and concept of duality, dual simplex method. | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Transportation Problem:
|
|||||||||
Formulation of transportation problem, types, initial basic feasible solution using different methods, optimal solution by MODI method, degeneracy in transportation problems, application of transportation problem concept for maximization cases. Assignment Problem-formulation, types, application to maximization cases and travelling salesman problem. | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
PERT-CPM Techniques:
|
|||||||||
Introduction, network construction - rules, Fulkerson’s rule for numbering the events, AON and AOA diagrams; Critical path method to find the expected completion time of a project, floats; PERT for finding expected duration of an activity and project, determining the probability of completing a project, predicting the completion time of project; crashing of simple projects. | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Queuing Theory:
|
|||||||||
Queuing systems and their characteristics, Pure-birth and Pure-death models (only equations), empirical queuing models – M/M/1 and M/M/C models and their steady state performance analysis. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Sequencing:
|
|||||||||
Basic assumptions, sequencing ‘n’ jobs on single machine using priority rules, sequencing using Johnson’s rule-‘n’ jobs on 2 machines, ‘n’ jobs on 3 machines, ‘n’ jobs on ‘m’ machines. Sequencing 2 jobs on ‘m’ machines using graphical method. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Game Theory:
|
|||||||||
Formulation of games, types, solution of games with saddle point, graphical method of solving mixed strategy games, dominance rule for solving mixed strategy games. | |||||||||
Text Books And Reference Books: T1. P K Gupta and D S Hira, “Operations Research”, 6th edition, Chand Publications, New Delhi , 2014. T2.Taha H A, “Operations Research”, 10th edition, Pearson Education, 2016. T3.El-Ghazali Talbi, “Metaheuristics: From Design to Implementation”, 2013 Edition, Wiley Publishers, ISBN-13: 978-0470278581 T4.Kalavathy.S, “Operation research”, 4th Edition, Vikas Publishing House, 2013 ISBN:978-93-259-6347-4 | |||||||||
Essential Reading / Recommended Reading R1. A P Verma, “Operations Research”, 7th edition, S K Kataria &Sons, , 2016(reprint) R2.Paneerselvam, “Operations Research”, 2nd edition, PHI, 2006. R3.RA M Natarajan and P Balasubramani, “Operations Research”, 4th impression, Pearson Education, 2009. R4.Hiller and Liberman, “Introduction to Operations Research”, 9th edition, McGraw Hill, 2012. R5.RS.D. Sharma, “Operations Research”, Ledarnath Ramanath & Co, 2002. R6.Mitsuo Gen & Runwei Cheng, “Genetic Algorithm and engineering Design”, 1997 Edition, A Wiley- Interscience Publication, ISBN:0-471-12741-8 | |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU544E5 - SOLID MECHANICS (2019 Batch) | |||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||
Max Marks:100 |
Credits:3 |
||||||||
Course Objectives/Course Description |
|||||||||
1.To facilitate the students to appreciate the various mathematical relations of stress and strain. 2.To develop analytical skills in solving problems of plain stress, plain strain and axisymmetric conditions. 3.To be able to analyse some real time problem and to formulate the conditions for application in thick cylinders, rotating discs, torsion of non-circular cross-sections etc. 4.To impart knowledge of engineering application of plasticity and thermo-elasticity. |
|||||||||
Course Outcome |
|||||||||
CO1: Discuss the various concepts of stress-strain and its mathematical relations. {L1, L2} {PO1, PO2} CO2: Develop the linear elastic model for different boundary conditions. {L1, L2} { PO1, PO2} CO3: Analyse and solving the plane stress and plain strain problems. {L1, L2, L3} { PO1, PO2, PO3} CO4: Apply the knowledge of stresses in designing the thick cylinders, rotating discs, torsion of non-circular cross-sections etc. {L1, L2, L3} { PO1, PO2, PO3} CO5: Explain the basic concepts of plasticity and thermos-elasticity. {L1, L2, L3} { PO1, PO2} |
Unit-1 |
Teaching Hours:9 |
||||||||
Introduction to Cartesian tensors, Strains:
|
|||||||||
Introduction to Cartesian tensors, Strains: Concept of strain, derivation of small strain tensor and compatibility, Stress: Derivation of Cauchy relations and equilibrium and symmetry equations, principal stresses and directions. | |||||||||
Unit-2 |
Teaching Hours:9 |
||||||||
Constitutive equations:
|
|||||||||
Constitutive equations: Generalized Hooke’s law, Linear elasticity, Material symmetry; Boundary Value Problems: concepts of uniqueness and superposition. | |||||||||
Unit-3 |
Teaching Hours:9 |
||||||||
Plane stress and plane strain problems
|
|||||||||
Plane stress and plane strain problems, introduction to governing equations in cylindrical and spherical coordinates, axisymmetric problems. | |||||||||
Unit-4 |
Teaching Hours:9 |
||||||||
Application to thick cylinders
|
|||||||||
Application to thick cylinders, rotating discs, torsion of non-circular cross-sections. Stress concentration problems. | |||||||||
Unit-5 |
Teaching Hours:9 |
||||||||
Thermo-elasticity, 2-D contact problems.
|
|||||||||
Thermo-elasticity, 2-D contact problems. Solutions using potentials. Energy methods. Introduction to plasticity. | |||||||||
Text Books And Reference Books: T1. G. T. Mase, R. E. Smelser and G. E. Mase, “Continuum Mechanics for Engineers”, Third Edition, CRC Press, 2004. T2. Y. C. Fung, “Foundations of Solid Mechanics, Prentice Hall International”, 1965. T3. Lawrence. E. Malvern, “Introduction to Mechanics of a Continuous Medium”, Prentice Hall international, 1969. | |||||||||
Essential Reading / Recommended Reading R1. L. S. Srinath, “Advanced Mechanics of solids”, Tata Mc. Graw Hill, 3rd edition, 2009. R2. S. P. Timoshenko and J. N Gordier, “Theory of Elasticity”, 3rd edition, Mc.Graw Hill International, , 2010. | |||||||||
Evaluation Pattern
Continuous Internal Assessment {CIA}: 50% {50 marks out of 100 marks} End Semester Examination {ESE}: 50% {50 marks out of 100 marks} Components of the CIA CIA I: Subject Assignments / Online Tests: 10 marks CIA II: Mid Semester Examination {Theory}: 25 marks CIA III: Quiz/Seminar/Case Studies/Project/Innovative Assignments/presentations/publications: 10 marks Attendance: 05 marks Total: 50 marks | |||||||||
AU551 - COMPUTATIONAL LABORATORY (2019 Batch) | |||||||||
Total Teaching Hours for Semester:30 |
No of Lecture Hours/Week:2 |
||||||||
Max Marks:100 |
Credits:1 |
||||||||
Course Objectives/Course Description |
|||||||||
FEA tools are used vastly by industries to validate the design and improvement of overall product experience. Hence, students will be trained for using FEM by using commercial tools. This will not only improve their knowledge but also will help them to secure better job with in Industry. |
|||||||||
Course Outcome |
|||||||||
CO1: To known the latest vastly used commercial tool {L1,2} {PO1,2,5} CO2: Virtual testing of product or mechanical components. {L1,2,5} {PO1,2,5} CO3: Improvement of product/ part design by using FEM tools. {L1,2,5} {PO1,2,5} |
Unit-1 |
Teaching Hours:30 |
||||||||||||||||||||||||||
List of Experiments
|
|||||||||||||||||||||||||||
| |||||||||||||||||||||||||||
Text Books And Reference Books: T1. Huebner, K. (2001). The finite element method for engineers. New York: John Wiley & Sons. T2. Ataei, H. and Mamaghani, M. (2017). Finite element analysis. 1st ed. createspace Independent. | |||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Huebner, K. (2001). The finite element method for engineers. New York: John Wiley & Sons. R2. Ataei, H. and Mamaghani, M. (2017). Finite element analysis. 1st ed. CreateSpace Independent. | |||||||||||||||||||||||||||
Evaluation Pattern
● Continuous Internal Assessment {CIA}: 50% {25 marks out of 50 marks} ● End Semester Examination {ESE} : 50% {25 marks out of 50 marks} | |||||||||||||||||||||||||||
CEOE561E01 - SOLID WASTE MANAGEMENT (2019 Batch) | |||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||
This course give introduction to solid waste management, collection and transportation, treatment/processing techniques, incineration , composting, sanitary land filling, disposal methods, recycle and reuse. Objective of this course is to provide insight to manage solid waste. It is designed as a source of information on solid waste management , includiing the principles of solid waste management , processing and treatment, final disposal, recycle and reuse
|
|||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||
CO1Define and explain important concepts in the field of solid waste management, such as waste hierarchy, waste prevention, recirculation, municipal solid waste etc. CO2 Suggest and describe suitable technical solutions for biological and thermal treatment. CO3Suggest, motivate and describe a way to tackle the problem from a system analysis approach. CO4 Describe the construction and operation of a modern landfill according to the demands CO5 Discuss social aspects connected to handling and recirculation of solid waste from a local as well as global perspective. |
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Sources
|
|||||||||||||||||||||||||||||||
Classification and characteristics – municipal, commercial & industrial. Methods of quantification | |||||||||||||||||||||||||||||||
Unit-1 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Introduction
|
|||||||||||||||||||||||||||||||
Definition, Land Pollution – scope and importance of solid waste management, functional elements of solid waste management. | |||||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Collection and Transportation
|
|||||||||||||||||||||||||||||||
Systems of collection, collection equipment, garbage chutes, transfer stations – bailing and compacting, route optimization techniques and problems. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Treatment/Processing Techniques
|
|||||||||||||||||||||||||||||||
Components separation, volume reduction, size reduction, chemical reduction and biological processing problems. | |||||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Incineration
|
|||||||||||||||||||||||||||||||
Process – 3 T’s, factors affecting incineration process, incinerators – types, prevention of air pollution, pyrolsis, design criteria for incineration. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Composting
|
|||||||||||||||||||||||||||||||
Aerobic and anaerobic composting, factors affecting composting, Indore and Bangalore processes, mechanical and semi mechanical composting processes. Vermi composting. | |||||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Sanitary land filling
|
|||||||||||||||||||||||||||||||
Different types, trench area, Ramp and pit method, site selection, basic steps involved, cell design, prevention of site pollution, leachate & gas collection and control methods, geo-synthetic fabricsin sanitary landfills. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Recycle and Reuse
|
|||||||||||||||||||||||||||||||
Material and energy recovery operations, reuse in other industries, plastic wastes, environmental significance and reuse. | |||||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:9 |
||||||||||||||||||||||||||||||
Disposal Methods
|
|||||||||||||||||||||||||||||||
Open dumping – selection of site, ocean disposal, feeding to hogs, incineration, pyrolsis, composting, sanitary land filling, merits and demerits, biomedical wastes and disposal. | |||||||||||||||||||||||||||||||
Text Books And Reference Books: T1 Bhide and Sunderashan “Solid Waste Management in developing countries”, T2 Tchobanoglous “Integrated Solid Waste Management”, Mc Graw Hill. | |||||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Peavy and Tchobanoglous “Environmental Engineering”, R2. Garg S K “Environmental Engineering”, Vol II R3. “Biomedical waste handling rules – 2000”. R4. Pavoni J.L. “Hand book on Solid Waste Disposal” | |||||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||||
CEOE561E03 - DISASTER MANAGEMENT (2019 Batch) | |||||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:4 |
||||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||||
Course would help to understand the scope and relevance of Multi Disciplinary approach in Disaster Management in a dynamic world and to realize the responsibilities of individuals and institutions for effective disaster response and disaster risk reduction |
|||||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||||
CO1 : Explain Hazards and Disasters (L2, PO 4) CO2 :Assess managerial aspects of Disaster Management, plan and explain risk analysis (L3, PO5) CO3 : Relate Disasters and Development (L4, PO7) CO4 : Compare climate change impacts and develop scenarios (L5, PO6) CO5: Categorize policies and institutional mechanisms in Disaster Management and the impacts on society (L5, PO7) |
Unit-1 |
Teaching Hours:8 |
||||||||||||||||||||||||||||
Introduction to Hazard and Disasters
|
|||||||||||||||||||||||||||||
Principles of Disaster Management, Hazards, Risks and Vulnerabilities; Natural Disasters (Indicative list: Earthquake, Floods, Fire, Landslides, Tornado, Cyclones, Tsunamis, Human Induced Disasters (e.g Nuclear, Chemical, Terrorism. Assessment of Disaster Vulnerability of a location and vulnerable groups; Pandemics | |||||||||||||||||||||||||||||
Unit-2 |
Teaching Hours:8 |
||||||||||||||||||||||||||||
Disaster Management Cycle and Humanitarian Logistics
|
|||||||||||||||||||||||||||||
Prevention, Preparedness and Mitigation measures for various Disasters, Post Disaster Relief & Logistics Management, Emergency Support Functions and their coordination mechanism, Resource & Material Management, Management of Relief Camp, Information systems & decision making tools, Voluntary Agencies & Community Participation at various stages of disaster, management. | |||||||||||||||||||||||||||||
Unit-3 |
Teaching Hours:8 |
||||||||||||||||||||||||||||
Natural resources and Energy sources
|
|||||||||||||||||||||||||||||
Renewable and non-renewable resources, Role of individual in conservation of natural resources for sustainable life styles. Use and over exploitation of Forest resources. Use and over exploitation of surface and ground water resources, Conflicts over water, Dams- benefits and problems. | |||||||||||||||||||||||||||||
Unit-4 |
Teaching Hours:10 |
||||||||||||||||||||||||||||
Global Environmental Issues
|
|||||||||||||||||||||||||||||
Global Environmental crisis, Current global environment issues, Global Warming, Greenhouse Effect, role of Carbon Dioxide and Methane, Ozone Problem, CFC‟s and Alternatives, Causes of Climate Change Energy Use: past, present and future, Role of Engineers. | |||||||||||||||||||||||||||||
Unit-5 |
Teaching Hours:11 |
||||||||||||||||||||||||||||
Disaster Risk Reduction and Development
|
|||||||||||||||||||||||||||||
Disaster Risk Reduction and Institutional Mechanisms Meteorological observatory – Seismological observatory - Volcanology institution - Hydrology Laboratory; National Disaster Management Authority (India); Disaster Policies of Foreign countries. Integration of public policy: Incident Command System; National Disaster Management Plans and Policies; Planning and design of infrastructure for disaster management, Community based approach in disaster management, methods for effective dissemination of information, ecological and sustainable development models for disaster management. Technical Tolls for Disaster Management: Monitoring, Management program for disaster mitigation ; Geographical Information System(GIS) ; Role of Social Media in Disaster Management | |||||||||||||||||||||||||||||
Text Books And Reference Books:
T1. Paul, B.K, “Environmental Hazards and Disasters: Contexts, Perspectives and Management”, Wiley-Blackwell, 2011. (Unit 1 – Chapter 1; Unit 2 – Chapter 1, 3; Unit 3 – Chapter 4; Unit 4 – Chapter 5 & 6) T2. Keller, Edward, and Duane DeVecchio. “Natural hazards: earth's processes as hazards, disasters, and catastrophe”s. Pearson Higher Education AU, 2015. (Unit 5 – Chapter 6 & 7) | |||||||||||||||||||||||||||||
Essential Reading / Recommended Reading R1. Coppola, D, “Introduction to International Disaster Management “Elsevier, 2015.
R2. Fookes, Peter G., E. Mark Lee, and James S. Griffiths. "Engineering geomorphology: theory and practice." Whittles Publications, 2007.
R3. Tomasini, R. And Wassanhove, L.V (2009). Humanitarian Logistics. Pangrave Macmillan. | |||||||||||||||||||||||||||||
Evaluation Pattern
| |||||||||||||||||||||||||||||
CSOE561E04 - PYTHON FOR ENGINEERS (2019 Batch) | |||||||||||||||||||||||||||||
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
||||||||||||||||||||||||||||
Max Marks:100 |
Credits:3 |
||||||||||||||||||||||||||||
Course Objectives/Course Description |
|||||||||||||||||||||||||||||
Specifically, the course has the following objectives. By the end of the course, students will be able to: •Develop a working knowledge for how computers operate and how computer programs are executed. •Evolve critical thinking and problem-solving skills using an algorithmic approach. •Learn about the programmer’s role in the software development process. •Translate real-world issues into computer-solvable problems.
|
|||||||||||||||||||||||||||||
Course Outcome |
|||||||||||||||||||||||||||||
CO1: Demonstrate the basic methods of formatting, outputting data, kinds of data, operators and variables. CO2: Interpret with the concepts of Boolean values, utilization of loops and operators. CO3: Experiment with functions, passing arguments and data processing. CO4: Illustrate the concept of modules, exceptions, strings and lists. CO5: Apply the fundamentals of OOP and its implementation. |
Unit-1 |
Teaching Hours:9 |
INTRODUCTION
|
|
Introduction to Python and computer programming: Programming – absolute basics, Python – a tool, not a reptile, First program, Python literals, Operators – data manipulation tools, Variables. | |
Unit-2 |
Teaching Hours:9 |
CONDITIONAL STATEMENTS LOOPING AND ARRAY
|
|
Making decisions in Python, Python's loops, Logic and bit operations in Python, Lists – collections of data, Sorting simple lists – the bubble sort algorithm, Lists – some more details, Lists in advanced applications. | |
Unit-3 |
Teaching Hours:9 |
FUNCTIONS
|
|
Writing functions in Python, How functions communicate with their environment, Returning a result from a function, Scopes in Python. Creating functions, Tuples and dictionaries. | |
Unit-4 |
Teaching Hours:9 |
MODULES
|
|
Using modules, Some useful modules, Package, Errors, The anatomy of an exception, Some of the most useful exceptions, Characters and strings vs. computers, The nature of Python's strings, String methods, Strings in action. | |
Unit-5 |
Teaching Hours:9 |
FUNDAMENTALS OF OOP
|
|
Basic concepts of object programming, A short journey from the procedural to the object approach, Properties, Methods, and Inheritance – one of object programming foundations, Generators and closures, Processing files, Working with real files. | |
Text Books And Reference Books: Text Books: T1. Eric Matthes, “Python Crash Course”, 2nd Edition: A Hands-On, Project-Based Introduction to Programming, No Starch Press, Inc, 2016 T2. Paul Barry, “Head first Python”, 2nd Edition, O’Reilly, 2017. | |
Essential Reading / Recommended Reading Reference Books: R1: Paul Barry, “Head First Python: A Brain-Friendly Guide”, Shroff/O'Reilly; Second edition, 2016. R2: Martin C. Brown,”Python: The Complete Reference”, McGraw Hill Education; Fourth edition, 2018.
| |
Evaluation Pattern ● Continuous Internal Assessment (CIA) : 50% (50 marks out of 100 marks) ● End Semester Examination(ESE) : 50% (50 marks out of 100 marks) | |
ECOE5603 - AUTOMOTIVE ELECTRONICS (2019 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The aim of this course is to enable student to understand the complete dynamics of automotive electronics, design and implementation of the electronics that contributes to the safety of the automobiles, add-on features, and comforts. |
|
Course Outcome |
|
At the end of the course, the student will be able to : CO1:Implement various control requirements in the automotive system CO2: Comprehend dashboard electronics and engine system electronics CO3:Identify various physical parameters that are to be sensed and monitored for maintaining the stability of the vehicle under dynamic conditions CO4:Understand and implement the controls and actuator system pertaining to the comfort and safety of commuters CO5: Design sensor network for mechanical fault diagnostics in an automotive vehicle |
Unit-1 |
Teaching Hours:9 |
AUTOMOTIVE FUNDAMENTALS
|
|
Use of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction control, Electronically controlled suspension | |
Unit-2 |
Teaching Hours:9 |
AUTOMOTIVE INSTRUMENTATION CONTROL
|
|
Sampling, Measurement and signal conversion of various parameters. Sensors and Actuators, Applications of sensors and actuators | |
Unit-3 |
Teaching Hours:9 |
BASICS OF ELECTRONIC ENGINE CONTROL
|
|
Integrated body- Climate controls, Motivation for Electronic Engine Control, Concept of An Electronic Engine Control System, Definition of General Terms, Definition of Engine Performance Terms, Electronic fuel control system, Engine control sequence, Electronic Ignition, air flow rate sensor, Indirect measurement of mass air flow, Engine crankshaft angular position sensor, Automotive engine control actuators, Digital engine control, Engine speed sensor ,Timing sensor for ignition and fuel delivery, Electronic ignition control systems, Safety systems, Interior safety, Lighting, Entertainment systems | |
Unit-4 |
Teaching Hours:9 |
VEHICLE MOTION CONTROL AND AUTOMOTIVE DIAGNOSTICS
|
|
Cruise control system, Digital cruise control, Timing light, Engine analyzer, On-board and off-board diagnostics, Expert systems. Stepper motor based actuator, Cruise control electronics, Vacuum – antilock braking system, Electronic suspension system Electronic steering control, Computer-based instrumentation system, Sampling and Input\output signal conversion, Fuel quantity measurement, Coolant temperature measurement, Oil pressure measurement, Vehicle speed measurement, Display devices, Trip-Information- Computer, Occupant protection systems | |
Unit-5 |
Teaching Hours:9 |
FUTURE AUTOMOTIVE ELECTRONIC SYSTEMS
|
|
Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines, Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control | |
Text Books And Reference Books: T1.A William B. Ribbens, "Understanding Automotive Electronics",6th Edition SAMS/Elsevier publishing, 2007 | |
Essential Reading / Recommended Reading R1. Robert Bosch Gmbh,"Automotive Electrics and Automotive Electronics-Systems and Components, Networking and Hybrid Drive", 5th Edition, Springer, Vieweg, 2007 | |
Evaluation Pattern As per university norm | |
ECOE5608 - FUNDAMENTALS OF IMAGE PROCESSING (2019 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The aim of this course is to introduce image processing fundamentals making the students to understand the different methods available to process an image and also give them an insight about the toolbox in MATLAB which can be used to do simulations in image processing. |
|
Course Outcome |
|
At the end of the course, the student will be able to : CO1: Understand the basic principles of image processing CO2: Understand the tools used for image processing applications CO3: Analyze the methods used for image preprocessing CO4: Apply the compression techniques and analyze the results CO5: Develop an image processing system for a given application |
Unit-1 |
Teaching Hours:9 |
DIGITAL IMAGE FUNDAMENTALS
|
|
Concept of Digital Image, conversion of analog image to digital, General Applications of image processing, Fundamental Steps in Digital Image Processing. Components of an Image Processing System. Elements of Visual Perception. Light and the Electromagnetic Spectrum. Image Sensing and Acquisition. Image Sampling and Quantization | |
Unit-2 |
Teaching Hours:9 |
MATLAB USING IP TOOL BOX
|
|
Introduction to MATLAB, Introduction to IP Tool box, Exercises on image enhancement, image restoration, and image segmentation | |
Unit-3 |
Teaching Hours:9 |
IMAGE PROCESSING TECHNIQUES PART 1
|
|
Image Enhancement in the Spatial Domain: Some Basic Gray Level Transformations. Histogram Processing. Enhancement Using Arithmetic/Logic Operations. Basics of Spatial Filtering. Smoothing Spatial Filters. Sharpening Spatial Filters. Importance of Image Restoration, Model of the Image Degradation/Restoration Process. Noise Models. Filters for Image Restoration: Minimum Mean Square Error (Wiener) Filtering. Constrained Least Squares Filtering. Geometric Mean Filter | |
Unit-4 |
Teaching Hours:9 |
IMAGE PROCESSING TECHNIQUES PART 2
|
|
Image Compression: Fundamentals. Image Compression Models. Elements of Information Theory. Error-Free Compression. Lossy Compression. Image Compression Standards. Image Segmentation: Detection of Discontinuities. Edge Linking and Boundary Detection. Thresholding. Region-Based Segmentation. Segmentation by Morphological Watersheds | |
Unit-5 |
Teaching Hours:9 |
APPLICATION OF IMAGE PROCESSING
|
|
Applications of image processing in the field of Biomedical, Remote sensing, Machine vision, Pattern recognition, and Microscopic Imaging | |
Text Books And Reference Books: T1.Gonzalez and woods, Digital Image Processing using MATLAB, PHI, 2005 | |
Essential Reading / Recommended Reading
| |
Evaluation Pattern As per university norms | |
ECOE5610 - EMBEDDED BOARDS FOR IOT APPLICATIONS (2019 Batch) | |
Total Teaching Hours for Semester:45 |
No of Lecture Hours/Week:3 |
Max Marks:100 |
Credits:3 |
Course Objectives/Course Description |
|
The aim of this course is to introduce the architecture, programming and interfacing of peripheral devices with embedded boards for IOT applications and design IOT based smart applications.
|
|
Course Outcome |
|
At the end of the course, the student will be able to : CO1: Understand the architecture, programming and interfacing principles of ATMEGA32 AVR microcontroller and Rasberry Pi CO2: Understand the applications of ATMEGA32 AVR microcontroller, Microprocessor and Rasberry Pi in IoT CO3: Analyze the design scheme for IoT using Microcontrollers |
Unit-1 |
Teaching Hours:9 |
NETWORKING SENSORS
|
|
Network Architecture - Sensor Network Scenarios- Optimization Goals and Figures of Merit- Physical Layer and Transceiver Design Considerations-MAC Protocols for Wireless Sensor Networks- Introduction of sensors and transducers | |
Unit-2 |
Teaching Hours:9 |
ARDUINO BOAR |